雙曲線
x2
4
-
y2
b2
=1(b∈N)
的兩個(gè)焦點(diǎn)為F1、F2,P為雙曲線上一點(diǎn),|OP|<5,|PF1|、|F1F2|、|PF2|成等比數(shù)列,則b2=
1
1
分析:通過等比數(shù)列雙曲線的定義,余弦定理推出:|OP|2=20+3b2.利用|OP|<5,b∈N,求出b的值.
解答:解:由題意,|PF1|、|F1F2|、|PF2|成等比數(shù)列可知,|F1F2|2=|PF1||PF2|,
即4c2=|PF1||PF2|,
由雙曲線的定義可知|PF1|-|PF2|=4,即|PF1|2+|PF2|2-2|PF1||PF2|=16,
可得|PF1|2+|PF2|2-8c2=16…①
設(shè)∠POF1=θ,則∠POF2=π-θ,
由余弦定理可得:|PF2|2=c2+|OP|2-2|OF2||OP|cos(π-θ),|PF1|2=c2+|OP|2-2|OF1||OP|cosθ,
|PF2|2+PF1|2=2c2+2|OP|2,…②,
由①②化簡(jiǎn)得:|OP|2=8+3c2=20+3b2
因?yàn)閨OP|<5,b∈N,所以20+3b2<25.
所以b=1.
故答案為:1.
點(diǎn)評(píng):本題考查雙曲線的定義,余弦定理以及等比數(shù)列的應(yīng)用,是有難度的綜合問題,考查分析問題解決問題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線
x2
4
-
y2
b2
=1(b>0)的漸近線方程式為y=±
1
2
x
,則b等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
4
-
y2
b2
=1
的右焦點(diǎn)與拋物線y2=12x的焦點(diǎn)重合,則該雙曲線的焦點(diǎn)到其漸近線的距離等于
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
4
-
y2
b2
=1的右焦點(diǎn)與拋物線y2=12x的焦點(diǎn)重合,求該雙曲線的焦點(diǎn)到其漸近線的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•黃埔區(qū)一模)若雙曲線
x2
4
-
y2
b2
=1(b>0)
的一條漸近線過點(diǎn)P(1,2),則b的值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P是雙曲線
x2
4
-
y2
b2
=1 (b>0)
上一點(diǎn),F(xiàn)1、F2是左右焦點(diǎn),△P F1F2的三邊長(zhǎng)成等差數(shù)列,且∠F1PF2=120°,則雙曲線的離心率等于
7
2
7
2

查看答案和解析>>

同步練習(xí)冊(cè)答案