橢圓=1(a>b>0)的一個焦點F與拋物線y2=4x的焦點重合,且截拋物線的準線所得弦長為,傾斜角為45°的直線l過點F.
(1)求該橢圓的方程;
(2)設橢圓的另一個焦點為F1,問拋物線y2=4x上是否存在一點M,使得M與F1關于直線l對稱,若存在,求出點M的坐標,若不存在,說明理由.
科目:高中數(shù)學 來源:2014屆陜西省西安市高二上學期期末考試理科數(shù)學卷(解析版) 題型:選擇題
橢圓+=1(a>b>0)的離心率是,則的最小值為( )
A. B.1 C. D.2
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年河北省高三3月月考數(shù)學試卷(解析版) 題型:解答題
如圖,已知橢圓=1(a>b>0)的離心率為,以該橢圓上的點和橢圓的左、右焦點F1、F2為頂點的三角形的周長為4(+1),一等軸雙曲線的頂點是該橢圓的焦點,設P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D.
(1)求橢圓和雙曲線的標準方程;
(2)設直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1;
(3)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2011年四川省成都市畢業(yè)班摸底測試(文科)數(shù)學卷 題型:填空題
經(jīng)過橢圓=1(a>b>0)的一個焦點和短軸端點的直線與原點的距離為,則該橢圓的離心率為
__________________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知點P(3,4)是橢圓+=1(a>b>0)上的一點,F(xiàn)1、F2是橢圓的兩焦點,若PF1⊥PF2,試求:
(1)橢圓方程;
(2)△PF1F2的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com