已知△ABC的三個頂點為A(-1,0),B(1,0),C在圓(x-2)2+(y-2)2=1上運動,則△ABC面積的最小值為___________.
1
∵|AB|=2,若△ABC面積最小,只要頂點C到AB距離最小即可,由平面幾何知識可知,C到AB距離的最小值為圓心到AB之距減去圓半徑,即2-1=1,
.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分16分)
在直角坐標系xOy中,直線l與x軸正半軸和y軸正半軸分別相交于A,B兩點,△AOB的內(nèi)切圓為圓M.
(1)如果圓M的半徑為1,l與圓M切于點C (,1+),求直線l的方程;
(2)如果圓M的半徑為1,證明:當△AOB的面積、周長最小時,此時△AOB為同一個三角形;
(3)如果l的方程為x+y-2-=0,P為圓M上任一點,求的最值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
在平面直角坐標系中,已知圓和圓.
(1)若直線過點,且被圓截得的弦長為,求直線的方程;
(2)在平面內(nèi)是否存在一點,使得過點有無窮多對互相垂直的直線,它們分別與圓和圓相交,且直線被圓截得的弦長的倍與直線被圓截得的弦長相等?若存在,求出所有滿足條件的點的坐標;若不存在,請說明理由.
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓,交于A、B兩點;
(1)求過A、B兩點的直線方程;
(2)求過A、B兩點,且圓心在直線上的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知一動圓與圓C1: x2+y2+2x-4y+1=0外切,并且和定圓C2: x2+y2-10x-4y-71=0內(nèi)切,求動圓圓心的的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

判斷圓C1:x2+y2-2x-6y-26=0與圓C2:x2+y2-4x+2y+4=0?的公切線條數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓的方程為x2+y2=r2,圓內(nèi)有定點Pa,b),圓周上有兩個動點A,B,使PAPB,求矩形APBQ的頂點Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

(天津文,14)若圓與圓的公共弦長為,則a=________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

方程(x-2)2+(y+2)2=0表示的曲線是( 。
A.圓B.兩條直線C.一個點D.兩個點

查看答案和解析>>

同步練習冊答案