13、如果直線y=a和圓x2+y2-2y=0相切,那么a等于
0或2
分析:將圓x2+y2-2y=0化為標準形式,確定圓心和半徑,再由直線和圓相切知圓心到直線的距離等于半徑,從而求得a的值.
解答:解:將x2+y2-2y=0化為標準形式為:x2+(y-1)2=1,
直線y=a和圓x2+y2-2y=0相切,即圓心(0,1)到直線y=a的距離等于半徑.
即|a-1|=1,解得:a=0或2.
故答案為:0或2.
點評:本題考查了直線與圓的位置關系中的相切,屬于基礎題型.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如果拋物線y2=px和圓(x-2)2+y2=3相交,它們在x軸上方的交點A、B,那么當p為何值時,線段AB的中點M在直線y=x上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C經(jīng)過點A(1,2)、B(3,0),并且直線m:2x-3y=0平分圓C.
(1)求圓C的方程;
(2)過點D(0,3),且斜率為k的直線l與圓C有兩個不同的交點E、F,若|EF|≥2
3
,求k的取值范圍;
(3)若圓C關于點(
3
2
,1)
對稱的曲線為圓Q,設M(x1,y1)、P(x2,y2)(x1≠±x2)是圓Q上的兩個動點,點M關于原點的對稱點為M1,點M關于x軸的對稱點為M2,如果直線PM1、PM2與y軸分別交于(0,m)和(0,n),問m•n是否為定值?若是求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選做題(請考生在以下三個小題中任選一題作答,如果多做,則按所做的第一題評閱記分)
(1)(不等式選講)已知函數(shù)f(x)=log2(|x-1|+|x-5|-a),當函數(shù)f(x)的定義域為R時,則實數(shù)a的取值范圍為
(-∞,4)
(-∞,4)

(2)(幾何證明選講)如圖,AB是半圓O的直徑,點C在半圓上,CD⊥AB,垂足為D,且AD=5DB,設∠COD=θ,則tanθ的值為
5
2
5
2


(3)(坐標系與參數(shù)方程)圓O1和圓O2的極坐標方程分別為ρ=4cosθ,ρ=-4sinθ,則經(jīng)過兩圓圓心的直線的直角坐標方程為
y=x+2
y=x+2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

本題有(Ⅰ)、(Ⅱ)、(Ⅲ)三個選答題,每題7分,請考生任選兩題作答,滿分14分.如果多做,則按所做的前兩題記分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(Ⅰ)直線l1:x=-4先經(jīng)過矩陣A=
4m
n-4
作用,再經(jīng)過矩陣B=
11
0-1
作用,變?yōu)橹本l2:2x-y=4,求矩陣A.
(Ⅱ)已知直線l的參數(shù)方程:
x=t
y=1+2t
(t為參數(shù))和圓C的極坐標方程:p=2
2
sin(θ+
π
4
).判斷直線l和圓C的位置關系.
(Ⅲ)解不等式:|x|+2|x-1|≤4.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高三數(shù)學復習(第8章 圓錐曲線):8.6 直線與圓錐曲線位置關系(二)(解析版) 題型:解答題

如果拋物線y2=px和圓(x-2)2+y2=3相交,它們在x軸上方的交點A、B,那么當p為何值時,線段AB的中點M在直線y=x上.

查看答案和解析>>

同步練習冊答案