設(shè)實(shí)數(shù)x,y滿足x2+y2≤1,則點(diǎn)(x,y)不在區(qū)域內(nèi)的概率是( )
A.
B.
C.
D.
【答案】分析:畫出圖象求出其對(duì)應(yīng)的面積,即所有基本事件總數(shù)對(duì)應(yīng)的幾何量,再求出區(qū)域內(nèi)也單位圓重合部分的面積,代入幾何概型計(jì)算公式,即可得到答案.
解答:解:滿足約束條件x2+y2≤1區(qū)域?yàn)椤袿的內(nèi)部(含邊界),面積A=π
內(nèi)的區(qū)域?yàn)槿鐖D所示的正方形,邊長(zhǎng)為,面積S=4×=2
則點(diǎn)(x,y)不落在區(qū)域的概率概率為P==1-
故選B
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是幾何概型,二元一次不等式(組)與平面區(qū)域,求出滿足條件A的基本事件對(duì)應(yīng)的“幾何度量”N(A),再求出總的基本事件對(duì)應(yīng)的“幾何度量”N,最后根據(jù)幾何概率的公式可求
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

16、設(shè)實(shí)數(shù)x,y滿足x2+2xy-1=0,則x+y的取值范圍是
(-∞,-1]∪[1,∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實(shí)數(shù)x,y滿足x2-y2+x+3y-2≥0,當(dāng)x∈[-2,2]時(shí),x+y的最大值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實(shí)數(shù)x,y滿足x2+(y-1)2=1,若不等式x+y+C≥0對(duì)任意的x,y都成立,則實(shí)數(shù)C的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實(shí)數(shù)x,y滿足x2+(y-2)2=1,若對(duì)滿足條件x,y,不等式x2+y2+c≤0恒成立,則c的取值范圍是
c≤-9
c≤-9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實(shí)數(shù)x,y 滿足x2+y2+xy=1,求x+y的最大值.
題設(shè)條件“x2+y2+xy=1”有以下兩種等價(jià)變形:
(x+
y
2
)2+(
3
2
y)2=1
;
②x2+y2-2xycos120°=1.
請(qǐng)按上述變形提示,用兩種不同的方法分別解答原題.

查看答案和解析>>

同步練習(xí)冊(cè)答案