雙曲線的漸近線方程是( )
A.x±2y=0
B.2x±y=0
C.4x±y=0
D.x±4y=0
【答案】分析:漸近線方程是-y2=0,整理后就得到雙曲線的漸近線.
解答:解:雙曲線
其漸近線方程是-y2=0
整理得 x±2y=0.
故選A.
點(diǎn)評:本題考查了雙曲線的漸進(jìn)方程,把雙曲線的標(biāo)準(zhǔn)方程中的“1”轉(zhuǎn)化成“0”即可求出漸進(jìn)方程.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知焦點(diǎn)在x軸上的雙曲線的虛軸長等于半焦距,則雙曲線的漸近線方程是
y=±
3
x
y=±
3
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•萊蕪二模)已知雙曲線
x2
a2
-
y2
b2
=1
的實(shí)軸長為2,焦距為4,則該雙曲線的漸近線方程是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•棗莊二模)F1,F(xiàn)2為雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左右焦點(diǎn),過點(diǎn)F2作此雙曲線一條漸近線的垂線,垂足為M,滿足|
MF1
|=
2
|
MF2
|
,則此雙曲線的漸近線方程是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的一個焦點(diǎn)到一條漸近線的距離等于焦距的
1
4
,則該雙曲線的漸近線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若F1,F(xiàn)2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
與橢圓
x2
25
+
y2
9
=1
的共同的左、右焦點(diǎn),點(diǎn)P是兩曲線的一個交點(diǎn),且△PF1F2為等腰三角形,則該雙曲線的漸近線方程是
 

查看答案和解析>>

同步練習(xí)冊答案