精英家教網 > 高中數學 > 題目詳情
已知O是坐標原點,點A(1,2),若點M(x,y)為平面區(qū)域上的一個動點,則的最大值是( )
A.-1
B.
C.0
D.1
【答案】分析:首先畫出可行域,z=代入坐標變?yōu)閦=x+2y,即y=-x+z,z表示斜率為-的直線在y軸上的截距,故求z的最大值,即平移直線y=-x與可行域有公共點時直線在y軸上的截距的最大值即可.
解答:解:如圖所示:
z==x+2y,即y=-x+z,
首先做出直線l:y=-x,將l平行移動,當經過A(0,)點時在y軸上的截距最大,從而z最大.
因為B(0,),故z的最大值為z=0+2×=1.
故選D.
點評:本題考查線性規(guī)劃、向量的坐標表示、平面向量數量積的運算等基礎知識,考查運算求解能力,考查數形結合思想,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知O是坐標原點,點A(-1,1),若點M(x,y)為平面區(qū)域
x+y≥2
x≤1
y≤2
,上的一個動點,則
OA
OM
的取值范圍是(  )
A、[-1,0]
B、[0,1]
C、[0,2]
D、[-1,2]

查看答案和解析>>

科目:高中數學 來源: 題型:

已知O是坐標原點,點A(1,2),若點M(x,y)為平面區(qū)域
x-2y+1≥0
x+y+1≥0
x≤0
上的一個動點,則
OA
OM
的最小值是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•內江一模)已知O是坐標原點,點A(1,2),若點M(x,y)為平面區(qū)域
x-2y+1≥0
x+y+1≥0
x≤0
上的一個動點,則
OA
OM
的最大值是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知O是坐標原點,點A(-l,1),若點M(x,y)
x+y≥2
x≤1
y≤2
內的一個動點,則
OA
OM
的最大值是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•順義區(qū)一模)已知O是坐標原點,點A(-2,1),若點M(x,y)為平面區(qū)域
x-y+1≥0
y+1≥0
x+y+1≤0
,上的一個動點,則
OA
OM
的最大值為
3
3

查看答案和解析>>

同步練習冊答案