A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
分析 證明AD⊥平面A1BC,得出∠ACD即為直線AC與平面A1BC所成的角,求出AC=$\sqrt{2}$,AD=$\frac{\sqrt{2}}{2}$,即可得出結論.
解答 解:如圖,AB1∩A1B=D,連結CD,
∵AA1=AB,∴AD⊥A1B,
∵平面A1BC⊥側面A1ABB1,且平面A1BC∩側面A1ABB1=A1B,
∴AD⊥平面A1BC,
則CD是AC在平面A1BC內的射影,
∴∠ACD即為直線AC與平面A1BC所成的角,
又BC?平面A1BC,
所以AD⊥BC,
因為三棱柱ABC---A1B1C1是直三棱柱,
則AA1⊥底面ABC,
所以AA1⊥BC.
又AA1∩AD=A,從而BC⊥側面A1ABB1,
又AB?側面A1ABB1,故AB⊥BC
∵AA1=AB=BC=2,∴AC=$\sqrt{2}$,AD=$\frac{\sqrt{2}}{2}$
∴sin∠ACD=$\frac{1}{2}$,∴∠ACD=$\frac{π}{6}$,
故選A.
點評 本題考查直線與平面垂直的判定定理的應用,直線與平面所成角的求法,考查計算能力以及邏輯推理能力.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
排隊人數 | 0 | 1 | 2 | 3 | 4 | 5人以上 |
概率 | 0.1 | 0.16 | 0.3 | 0.3 | 0.1 | 0.04 |
A. | 0.56 | B. | 0.44 | C. | 0.26 | D. | 0.14 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com