若實數(shù)x,y滿足不等式組
y≤5
2x-y+3≤0
x+y-1≥0
,則z=|x|+2y的最大值是(  )
分析:根據(jù)題意先畫出滿足約束條件
y≤5
2x-y+3≤0
x+y-1≥0
的平面區(qū)域,然后分析平面區(qū)域里各個角點,令z=|x|+2y,進一步求出目標函數(shù)z=|x|+2y的最大值.
解答:解:滿足約束條件
y≤5
2x-y+3≤0
x+y-1≥0
的平面區(qū)域如圖所示:
z=|x|+2y表示一條拆線(圖中虛線),
y=5
x+y-1=0
得A(-4,5)
代入z=|x|+2y得z=|-4|+2×5=14,
當x=-4,y=5時,|x|+2y有最大值14.
故選C.
點評:在解決線性規(guī)劃的小題時,我們常用“角點法”,其步驟為:①由約束條件畫出可行域②求出可行域各個角點的坐標③將坐標逐一代入目標函數(shù)④驗證,求出最優(yōu)解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)y=f(x),若對任意不等實數(shù)x1,x2滿足
f(x1)-f(x2)
x1-x2
<0
,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(1,0)對稱,則當 1≤x≤4時,
y
x
的取值范圍為
[-
1
2
,1]
[-
1
2
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年重慶一中高三(上)10月月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

定義在R上的函數(shù)y=f(x),若對任意不等實數(shù)x1,x2滿足,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(1,0)對稱,則當 1≤x≤4時,的取值范圍為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年山東省實驗中學(xué)高考數(shù)學(xué)三模試卷(文科)(解析版) 題型:填空題

定義在R上的函數(shù)y=f(x),若對任意不等實數(shù)x1,x2滿足,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(1,0)對稱,則當 1≤x≤4時,的取值范圍為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年山東省淄博市高考數(shù)學(xué)模擬試卷3(理科)(解析版) 題型:填空題

定義在R上的函數(shù)y=f(x),若對任意不等實數(shù)x1,x2滿足,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(1,0)對稱,則當 1≤x≤4時,的取值范圍為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年山東省實驗中學(xué)高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

定義在R上的函數(shù)y=f(x),若對任意不等實數(shù)x1,x2滿足,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(1,0)對稱,則當 1≤x≤4時,的取值范圍為   

查看答案和解析>>

同步練習(xí)冊答案