10.已知復數(shù)$\frac{4i}{1+i}$,則它在復平面內對應的點應該在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 直接利用復數(shù)代數(shù)形式的乘除運算化簡復數(shù)$\frac{4i}{1+i}$,求出它在復平面內對應的點的坐標,則答案可求.

解答 解:$\frac{4i}{1+i}$=$\frac{4i(1-i)}{(1+i)(1-i)}=2i-2{i}^{2}=2+2i$,
則它在復平面內對應的點的坐標為:(2,2),位于第一象限.
故選:A.

點評 本題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的代數(shù)表示法及其幾何意義,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.等差數(shù)列{an}中,a3+a5=16,則a4=( 。
A.8B.6C.4D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知平面向量$\overrightarrow a$=(2,-1),向上平移2個單位,再向左平移1個單位得到向量$\overrightarrow$,則$\overrightarrow$=(1,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.若復數(shù)z1=a+2i(a∈R),z2=3-4i,且$\frac{{z}_{1}}{{z}_{2}}$為純虛數(shù),則|z1|=$\frac{10}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,某自行車手從O點出發(fā),沿折線O-A-B-O勻速騎行,其中點A位于點O南偏東45°且與點O相距20$\sqrt{2}$千米.該車手于上午8點整到達點A,8點20分騎至點C,其中點C位于點O南偏東(45°-α)(其中sinα=$\frac{1}{{\sqrt{26}}}$,0°<α<90°)且與點O相距5$\sqrt{13}$千米(假設所有路面及觀測點都在同一水平面上).
(1)求該自行車手的騎行速度;
(2)若點O正西方向27.5千米處有個氣象觀測站E,假定以點E為中心的3.5千米范圍內有長時間的持續(xù)強降雨.試問:該自行車手會不會進入降雨區(qū),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.在平面直角坐標系xOy中,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{{\sqrt{3}}}{2}$,且點($\sqrt{3}$,$\frac{1}{2}$)在橢圓C上.
(1)求橢圓C的方程;
(2)設橢圓E:$\frac{{x}^{2}}{4{a}^{2}}$+$\frac{{y}^{2}}{4^{2}}$=1,P為橢圓C上任意一點,過點P的直線y=kx+m交橢圓E于A,B兩點,射線PO交橢圓E于點Q.
(i)求證$\frac{|OQ|}{|OP|}$=2;
(ii)求△ABQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.在空間直角坐標系中,若A(2,-2,1),B(4,2,3),C(x,y,2)三點共線,則$\left|\overrightarrow{BC}\right|$=( 。
A.$\sqrt{6}$B.$2\sqrt{6}$C.$\sqrt{5}$D.$2\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.若函數(shù)f(x)=lg(8+2x-x2)的定義域為M,函數(shù)g(x)=$\sqrt{1-\frac{2}{x-1}}$的定義域為N,求集合M,N,M∩N.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若(1+x)4=a0+a1x+a2x2+a3x3+a4x4,則a1+a2+a3+a4的值為( 。
A.0B.15C.16D.17

查看答案和解析>>

同步練習冊答案