如圖,設(shè)E:+=1(a>b>0)的焦點(diǎn)為F1與F2,且P∈E,∠F1PF2=2θ.

求證:△PF1F2的面積S=b2tanθ.

剖析:有些圓錐曲線問題用定義去解決比較方便.如本題,設(shè)|PF1|=r1,|PF2|=r2,則S=r1r2sin2θ.若能消去r1r2,問題即獲解決.

證明:設(shè)|PF1|=r1,|PF2|=r2,

    則S=r1r2sin2θ,又|F1F2|=2c,

    由余弦定理有

    (2c)2=r12+r22-2r1r2cos2θ=(r1+r2)2-2r1r2-2r1r2cos2θ=(2a)2-2r1r2(1+cos2θ),

    于是2r1r2(1+cos2θ)=4a2-4c2=4b2.

    所以r1r2=.

    這樣即有S=· sin2θ=b2=b2tanθ.

講評:涉及橢圓中焦半徑或過焦點(diǎn)弦問題,要綜合橢圓兩個定義,合理代換解題,此類問題較為常見.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,設(shè)E:
x2
a2
+
y2
b2
=1(a>b>0)的焦點(diǎn)為F1與F2,且P∈E,∠F1PF2=2θ.
求證:△PF1F2的面積S=b2tanθ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寧波二模)如圖,設(shè)拋物線C:y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,過準(zhǔn)線l上一點(diǎn)M(-1,0)且斜率為k的直線l1交拋物線C于A,B兩點(diǎn),線段AB的中點(diǎn)為P,直線PF交拋物線C于D,E兩點(diǎn).
(Ⅰ)求拋物線C的方程;
(Ⅱ)若|MA|•|MB|=λ|FD|•|FE|,試寫出λ關(guān)于k的函數(shù)解析式,并求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,在平面內(nèi),ABCD是AB=2,BC=
2
的矩形,△PAB是正三角形,將△PAB沿AB折起,使PC⊥BD,如圖2,E為AB的中點(diǎn),設(shè)直線l過點(diǎn)C且垂直于矩形ABCD所在平面,點(diǎn)F是直線l上的一個動點(diǎn),且與點(diǎn)P位于平面ABCD的同側(cè).
(1)求證:PE⊥平面ABCD;
(2)設(shè)直線PF與平面PAB所成的角為θ,若45°<θ≤60°,求線段CF長的取值范圍.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006年高考第一輪復(fù)習(xí)數(shù)學(xué):8.1 橢圓(解析版) 題型:解答題

如圖,設(shè)E:+=1(a>b>0)的焦點(diǎn)為F1與F2,且P∈E,∠F1PF2=2θ.
求證:△PF1F2的面積S=b2tanθ.

查看答案和解析>>

同步練習(xí)冊答案