已知2 x2+x≤42-x,求函數(shù)y=4x+2x+1+8的值域.
考點(diǎn):指數(shù)型復(fù)合函數(shù)的性質(zhì)及應(yīng)用,函數(shù)的值域
專(zhuān)題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:先由2 x2+x≤42-x求出-1≤x≤4,再求函數(shù)的值域.
解答: 解:∵2 x2+x≤42-x,
∴x2+x≤4-2x;
即x2-3x-4≤0;
故-1≤x≤4;
y=4x+2x+1+8=(2x+1)2+7,
37
4
≤y≤296;
故函數(shù)y=4x+2x+1+8的值域?yàn)閇
37
4
,296].
點(diǎn)評(píng):本題考查了函數(shù)值域的求法.高中函數(shù)值域求法有:1、觀察法,2、配方法,3、反函數(shù)法,4、判別式法;5、換元法,6、數(shù)形結(jié)合法,7、不等式法,8、分離常數(shù)法,9、單調(diào)性法,10、利用導(dǎo)數(shù)求函數(shù)的值域,11、最值法,12、構(gòu)造法,13、比例法.要根據(jù)題意選擇.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}中,已知a1+a4+a7=39,則a4=( 。
A、13B、14C、15D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,點(diǎn)M、N分別是面對(duì)角線(xiàn)A1B和B1D1的中點(diǎn).
(1)求證:MN⊥AB;
(2)求三棱錐A1-MND1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平行四邊形ABCD中,
AB
-
AC
-
CA
+
CD
等于( 。
A、2
CD
B、
AB
C、2
AB
D、
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)C:y2=2px(p>0)的焦點(diǎn)為F(2,0)
(Ⅰ)求拋物線(xiàn)的標(biāo)準(zhǔn)方程;
(Ⅱ)拋物線(xiàn)C在x軸上方一點(diǎn)A的橫坐標(biāo)為2,過(guò)點(diǎn)A作兩條傾斜角互補(bǔ)的直線(xiàn),與曲線(xiàn)C的另一個(gè)交點(diǎn)分別為B,C,求證:直線(xiàn)BC的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

集合 A={1,2,3,4,5},B={1,2,3},C={z|z=xy,x∈A且y∈B},則集合C中的元素個(gè)數(shù)為(  )
A、3B、11C、8D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正五邊形邊長(zhǎng)是1,求它的外接圓半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x=-2n-1,n∈N*},B={x|x=-6n+3,n∈N*},設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,若{an}的任一項(xiàng)an∈A∩B,且首項(xiàng)a1是A∩B中最大的數(shù),-750<S10<-300.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=|cos
2
|×2 
9-an-13n
2
,數(shù)列{bn}的前n項(xiàng)和為T(mén)n,證明:當(dāng)n≥3時(shí),T2n
2n
2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)Ax+By+C=0的斜率為5,且A-3B+3C=0,求此直線(xiàn)的一般式方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案