【題目】(本小題12分)已知函數(shù) .
(1)若=0,判斷函數(shù)的單調(diào)性;
(2)若時,<0恒成立,求的取值范圍.
【答案】(1)在上減函數(shù),在上增函數(shù);(2)
【解析】
試題分析:(1)函數(shù)在某個區(qū)間內(nèi)可導(dǎo),則若,則在這個區(qū)間內(nèi)單調(diào)遞增,若,則在這個區(qū)間內(nèi)單調(diào)遞減;(2)對于恒成立的問題,常用到兩個結(jié)論:(1),(2);(3)利用導(dǎo)數(shù)方法證明不等式在區(qū)間上恒成立的基本方法是構(gòu)造函數(shù),然后根據(jù)函數(shù)的單調(diào)性,或者函數(shù)的最值證明函數(shù),其中一個重要的技巧就是找到函數(shù)在什么地方可以等于零,這往往就是解決問題的一個突破口,觀察式子的特點,找到特點證明不等式
試題解析:(1)若,,
為減函數(shù),為增函數(shù). 4分
(2)在恒成立.
(1)若, ,,
為增函數(shù).
,
即不成立;
不成立. 6分
(2),在恒成立,
不妨設(shè),
, 8分
,
若,則,
,,為增函數(shù),(不合題意);
若,
,,為增函數(shù),(不合題意);
若,,,為減函數(shù),(符合題意).11分
綜上所述若時,恒成立,則. 12分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國南宋數(shù)學(xué)家秦九韶所著《數(shù)學(xué)九章》中有“米谷粒分”問題:糧倉開倉收糧,糧農(nóng)送來米1512石,驗得米內(nèi)夾谷,抽樣取米一把,數(shù)得216粒內(nèi)夾谷27粒,則這批米內(nèi)夾谷約( )
A.164石
B.178石
C.189石
D.196石
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓心為C的圓過點A(0,﹣6)和B(1,﹣5),且圓心在直線l:x﹣y+1=0上.
(1)求圓心為C的圓的標(biāo)準(zhǔn)方程;
(2)過點M(2,8)作圓的切線,求切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓心為(1,2)的圓C與直線l:3x﹣4y﹣5=0相切.
(1)求圓C的方程;
(2)求過點P(3,5)與圓C相切的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】f(x)是定義在(0,+∞)上的減函數(shù),滿足f(x)+f(y)=f(xy).
(1)求證: ;
(2)若f(4)=﹣4,解不等式 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:2x+y﹣1=0與圓C:x2+y2=1相交于A,B兩點.
(1)求△AOB的面積(O為坐標(biāo)原點);
(2)設(shè)直線ax+by=1與圓C:x2+y2=1相交于M,N兩點(其中a,b是實數(shù)),若OM⊥ON,試求點P(a,b)與點Q(0,1)距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】銳角三角形ABC的內(nèi)角A,B,C的對邊分別為a,b,c,a=2bsinA,則cosA+sinC的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,以M(﹣1,0)為圓心的圓與直線 相切.
(1)求圓M的方程;
(2)過點(0,3)的直線l被圓M截得的弦長為 ,求直線l的方程.
(3)已知A(﹣2,0),B(2,0),圓M內(nèi)的動點P滿足|PA||PB|=|PO|2 , 求 的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com