設(shè)橢圓的離心率為,點(diǎn),原點(diǎn)到直線(xiàn)的距離為

(1)求橢圓的方程;

(2)設(shè)點(diǎn),點(diǎn)在橢圓上(與均不重合),點(diǎn)在直線(xiàn)上,若直線(xiàn)的方程為,且,試求直線(xiàn)的方程.

 

【答案】

(1)(2)

【解析】

試題分析:解:(1)由                    2分

由點(diǎn),0),(0,)知直線(xiàn)的方程為,

于是可得直線(xiàn)的方程為                           4分

因此,得,,,

所以橢圓的方程為                         6分

(2)由(Ⅰ)知的坐標(biāo)依次為(2,0)、,

因?yàn)橹本(xiàn)經(jīng)過(guò)點(diǎn),所以,得

即得直線(xiàn)的方程為                          8分

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013062811571846624289/SYS201306281158153412374732_DA.files/image022.png">,所以,即         9分

設(shè)的坐標(biāo)為,則

,即直線(xiàn)的斜率為4                12分

考點(diǎn):直線(xiàn)與橢圓的位置關(guān)系

點(diǎn)評(píng):主要是考查了直線(xiàn)與橢圓的位置關(guān)系,以及點(diǎn)到直線(xiàn)的距離公式的綜合運(yùn)用,屬于中檔題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

4.設(shè)橢圓C1的離心率為
5
13
,焦點(diǎn)在x軸上且長(zhǎng)軸長(zhǎng)為26,若曲線(xiàn)C2上的點(diǎn)到橢圓C1的兩個(gè)焦點(diǎn)的距離的差的絕對(duì)值等于8,則曲線(xiàn)C2的標(biāo)準(zhǔn)方程為( 。
A、
x2
42
-
y2
32
=1
B、
x2
132
-
y2
52
=1
C、
x2
32
-
y2
42
=1
D、
x2
132
-
y2
122
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓C1的離心率為
513
,焦點(diǎn)在x軸上且長(zhǎng)軸長(zhǎng)為26.若曲線(xiàn)C2上的點(diǎn)到橢圓C1的兩個(gè)焦點(diǎn)的距離的差的絕對(duì)值等于8,則曲線(xiàn)C2的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓C1的離心率為
7
15
,焦點(diǎn)在x軸上且長(zhǎng)軸長(zhǎng)為30.若曲線(xiàn)C2上的點(diǎn)到橢圓C1的兩個(gè)焦點(diǎn)的距離的差的絕對(duì)值等于10,則曲線(xiàn)C2的標(biāo)準(zhǔn)方程為( 。
A、
x2
24
-
y2
25
=1
B、
x2
25
-
y2
24
=1
C、
x2
15
-
y2
7
=1
D、
x2
25
+
y2
24
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓C1的離心率為
513
,焦點(diǎn)在x軸上且長(zhǎng)軸長(zhǎng)為26.若曲線(xiàn)C2上的點(diǎn)到橢圓C1的兩個(gè)焦點(diǎn)的距離的差的絕對(duì)值等于8,求曲線(xiàn)C2的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓C1的離心率為
5
6
,焦點(diǎn)在x軸上且長(zhǎng)軸長(zhǎng)為12,若曲線(xiàn)C2上的點(diǎn)到橢圓C1的兩個(gè)焦點(diǎn)的距離的差的絕對(duì)值等于8,則曲線(xiàn)C2的標(biāo)準(zhǔn)方程為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案