精英家教網(wǎng)如圖,函數(shù)y=2sin(πx+φ),x∈R,(其中0≤φ≤
π
2
)的圖象與y軸交于點(diǎn)(0,1).
(Ⅰ)求φ的值;
(Ⅱ)設(shè)P是圖象上的最高點(diǎn),M、N是圖象與x軸的交點(diǎn),求
PM
PN
的夾角.
分析:(1)求正弦型函數(shù)的φ值,我們可以在函數(shù)圖象尋找一點(diǎn)的坐標(biāo)(一般是最值點(diǎn)的坐標(biāo)),代入函數(shù)的解析式,構(gòu)造關(guān)于φ的三角方程,結(jié)合φ的取值范圍,解方程即可得到φ的值.
(2)由(1)的結(jié)論我們不難得到函數(shù)的解析式,根據(jù)解析式,我們易得P,M,N三點(diǎn)坐標(biāo),及相應(yīng)向量的坐標(biāo),代入向量夾角公式,即可得到兩個(gè)向量的夾角.
解答:解:(Ⅰ)因?yàn)楹瘮?shù)圖象過(guò)點(diǎn)(0,1)
所以2sinx=1,即sinx=
1
2
?
因?yàn)?span id="gpq4ltv" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">0≤l≤
π
2
所以l=
π
6


(Ⅱ)由函數(shù)y=2sin(πx+
π
6
)
及其圖象,
M(-
1
6
,0),P(
1
3
,2),N(
5
6
,0)
,
所以
PM
=(-
1
2
,-2,)
PN
=(
1
2
,-2)

從而cos<
PM
PN
>=
PM
PN
|
PM
•|
PN
||
=
15
17

PM
,
PN
>=arccos
15
17
點(diǎn)評(píng):已知函數(shù)圖象求函數(shù)y=Asin(ωx+φ)(A>0,ω>0)的解析式時(shí),常用的解題方法是待定系數(shù)法,由圖中的最大值或最小值確定A,由周期確定ω,由適合解析式的點(diǎn)的坐標(biāo)來(lái)確定φ,但由圖象求得的y=Asin(ωx+φ)(A>0,ω>0)的解析式一般不唯一,只有限定φ的取值范圍,才能得出唯一解,否則φ的值不確定,解析式也就不唯一.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知如圖是函數(shù)y=2sin(ωx+φ)(|φ|<
π
2
)的圖象上的一段,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,函數(shù)y=2sin(πx+φ),x∈R,(其中0≤φ≤
π
2
)的圖象與y軸交于點(diǎn)(0,1).設(shè)P是圖象上的最高點(diǎn),M、N是圖象與x軸的交點(diǎn),
PM
PN
=
15
4
15
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,函數(shù)y=2sin(πx+φ),x∈R(其中0<φ≤
π
2
)的圖象與y軸交與點(diǎn)(0,1).
(1)求φ的值;
(2)設(shè)P是圖象上的最高點(diǎn),M,N是圖象與x軸交點(diǎn),求
PM
PN
夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,函數(shù)y=2sin(πx+φ),x∈R,(其中0≤φ≤
π
2
)的圖象與y軸交于點(diǎn)(0,1).設(shè)P是圖象上的最高點(diǎn),M、N是圖象與x軸的交點(diǎn),則
PM
PN
的夾角為
arccos
15
17
arccos
15
17

查看答案和解析>>

同步練習(xí)冊(cè)答案