已知直線(xiàn)l:y=kx與圓C1:(x-1)2+y2=1相交于A、B兩點(diǎn),圓C2與圓C1相外切,且與直線(xiàn)l相切于點(diǎn)M(3,
3
),求
(1)k的值
(2)|AB|的值
(3)圓C2的方程.
考點(diǎn):直線(xiàn)和圓的方程的應(yīng)用
專(zhuān)題:綜合題,直線(xiàn)與圓
分析:(1)點(diǎn)M在直線(xiàn)上,即可求出k的值;
(2)求出圓心到直線(xiàn)有距離,即可求出|AB|;
(3)利用圓C1與圓C2相切,可得
(m-3)2+3(m-4)2
=1+2|m-3|
,分類(lèi)討論,即可求出圓C2的方程.
解答: 解:(1)由題意知,點(diǎn)M在直線(xiàn)上,所以k=
3
3
(2分)
(2)圓心到直線(xiàn)有距離d=
|1-
3
×0|
12+(-
3
)
2
=
1
2
,于是|AB|=2
r2-d2
=
3
(4分)
(3)設(shè)所求的圓心的坐標(biāo)為C2(m,n),半徑為R.
由題意知C2M⊥l,則kC2Mkl=-1,即n=-
3
m+4
3
,從而R=C2M=2|m-3|,(8分)
又圓C1與圓C2相切,則C1C2=
(m-1)2+n2
=1+R
,
即:
(m-3)2+3(m-4)2
=1+2|m-3|

(A)當(dāng)m≥3時(shí)解得:m=4,n=0,R=2,則圓C2的方程為:(x-4)2+y2=4
(B)當(dāng)m,3時(shí)解得:m=0,n=4
3
,R=6
,則圓C2的方程為:x2+(y-4
3
)2=36

所以所求圓的方程為:(x-4)2+y2=4,x2+(y-4
3
)2=36
(14分)
點(diǎn)評(píng):本題考查直線(xiàn)和圓的方程的應(yīng)用,考查點(diǎn)到直線(xiàn)的距離公式,考查分類(lèi)討論的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}滿(mǎn)足:a1=1,an+1=
n2an+an2
an2+2an-n
+1,n∈N*
(Ⅰ)寫(xiě)出a2,a3,a4,猜想通項(xiàng)公式an,用數(shù)學(xué)歸納法證明你的猜想;
(Ⅱ)求證:
a 1a2
+
a2a3
+…+
ana n+1
1
2
(an+1)2,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC是等邊三角形,PA⊥平面ABC,DC∥PA,且DC=AC=2PA=2,E是BD的中點(diǎn).
(Ⅰ)求證:AE⊥BC;
(Ⅱ)求點(diǎn)D到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x3-6x+5,x∈R
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)若直線(xiàn)y=a與y=f(x)的圖象有三個(gè)不同的交點(diǎn),求實(shí)數(shù)a的取值范圍;
(3)已知當(dāng)x∈(1,+∞)時(shí),f(x)≥k(x-1)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲乙兩個(gè)班級(jí)均為40人,進(jìn)行一門(mén)考試后,按學(xué)生考試成績(jī)及格與不及格進(jìn)行統(tǒng)計(jì),甲班及格人數(shù)為36人,乙班及格人數(shù)為24人.
(Ⅰ)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2的列聯(lián)表;
(Ⅱ)試判斷能否有99.5%的把握認(rèn)為“考試成績(jī)與班級(jí)有關(guān)”?參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
;n=a+b+c+d
P(K2>k) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)x,y,m滿(mǎn)足|x-m|>|y-m|,則稱(chēng)x比y遠(yuǎn)離m.
(Ⅰ)若x-1比1遠(yuǎn)離0,求x的取值范圍;
(Ⅱ)對(duì)任意兩個(gè)不相等的正數(shù)a,b,證明:
a2+b2
2
比(
a+b
2
2遠(yuǎn)離0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)圓(x+1)2+y2=16的圓心為C,A(1,0)是圓內(nèi)一點(diǎn),Q為圓周上任意一點(diǎn),線(xiàn)段AQ的垂直平分線(xiàn)與CQ的連線(xiàn)交于點(diǎn)M.
(1)求點(diǎn)M的軌跡T的方程;
(2)設(shè)直線(xiàn)l:y=kx+1-2k恒過(guò)點(diǎn)P,且與曲線(xiàn)T相交于不同的兩點(diǎn)B、D,若
PB
PD
5
4
,試求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
a
=(cosx,sinx),
b
=(cosx,
3
cosx),f(x)=
a
b
,x∈R.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[0,
π
2
]時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若不等式x2-ax+4≥0對(duì)任意的x∈(0,3)都成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案