拋物線y2=4x的準線方程是   
【答案】分析:先根據(jù)拋物線的標準方程形式,求出p,再根據(jù)開口方向,寫出其準線方程.
解答:解:∵2p=4,
∴p=2,開口向右,
∴準線方程是x=-1.
故答案為x=-1.
點評:根據(jù)拋物線的方程求其焦點坐標和準線方程,一定要先化為標準形式,求出的值,再確定開口方向,否則,極易出現(xiàn)錯誤.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=4x的準線與雙曲線
x2a2
-y2=1
交于A、B兩點,點F為拋物線的焦點,若△FAB為直角三角形,則雙曲線的離心率是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)拋物線y2=4x的準線與x軸交于F1,焦點為F2,以F1,F(xiàn)2為焦點,離心率為
1
2
的橢圓的兩條準線之間的距離為( 。
A、4B、6C、8D、10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•溫州二模)橢圓
x2
a2
+y2=1的一個焦點在拋物線y2=4x的準線上,則該橢圓的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•武清區(qū)一模)拋物線y2=4x的準線與雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的兩條漸近線相交得二交點,若二交點間的距離為4,則該雙曲線的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=4x的準線與雙曲線 
x2
a2
-y2=1 (a>0)
交于A,B兩點,點F為拋物線的焦點,若△FAB為直角三角形,則a的值為( 。
A、
5
B、
3
C、
3
3
D、
5
5

查看答案和解析>>

同步練習冊答案