如圖,已知為平行四邊形,,,,點(diǎn)上,,,相交于.現(xiàn)將四邊形沿折起,使點(diǎn)在平面上的射影恰在直線上.

(Ⅰ) 求證:平面;
(Ⅱ) 求折后直線與平面所成角的余弦值.
(1)要證明線面垂直,只要通過線線垂直來判定線面垂直即可。
(2)

試題分析:解:(Ⅰ)∵EF⊥DN,EF⊥BN,DN∩BN=N
∴EF⊥面DNB ∵EF?平面BCEF,∴平面BDN⊥平面BCEF,∵BN=平面BDN∩平面BCEF,∴D在平面BCEF上的射影在直線BN上,∵D在平面BCEF上的射影在直線BC上,∴D在平面BCEF上的射影即為點(diǎn)B,∴BD⊥平面BCEF.   6分
(Ⅱ)連接BE,由BD⊥平面BCEF,得∠DEB即為直線DE與平面BCEF所成角.在原圖中,由已知,可得AD=3,BD=3,BN=,DN=2,DE=4 折后,由BD⊥平面BCEF,知BD⊥BN則BD2=DN2-BN2=9,即BD=3則在Rt△DEB中,有BD=3,DE=4,則BE=,故cos∠DEB= 即折后直線DE與平面BCEF所成角的余弦值為  14分
點(diǎn)評:主要是考查了空間幾何體中線面垂直的證明以及線面角的求解的綜合運(yùn)用,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

關(guān)于直線和平面,有如下四個命題:
(1)若,則;
(2)若,,則;
(3)若,則;
(4)若,則。其中真命題的個數(shù)是      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知斜三棱柱,側(cè)面與底面垂直,∠,,且,.

(1)試判斷與平面是否垂直,并說明理由;
(2)求側(cè)面與底面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示的幾何體是由以等邊三角形ABC為底面的棱柱被平面DEF所截面得,已知FA⊥平面ABC,AB=2,BD=1,AF=2, CE=3,O為AB的中點(diǎn).

(1)求證:OC⊥DF;
(2)求平面DEF與平面ABC相交所成銳二面角的大;
(3)求多面體ABC—FDE的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖甲,設(shè)正方形的邊長為,點(diǎn)分別在上,并且滿足
,如圖乙,將直角梯形沿折到的位置,使點(diǎn)
平面上的射影恰好在上.

(1)證明:平面;
(2)求平面與平面所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,若G,E,F(xiàn)分別是ABC的邊AB,BC,CA的中點(diǎn),O是△ABC的重心,則(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,為圓的直徑,點(diǎn)、在圓上,,矩形所在的平面與圓所在的平面互相垂直.已知,

(Ⅰ)求證:平面平面
(Ⅱ)求直線與平面所成角的大;
(Ⅲ)當(dāng)的長為何值時,平面與平面所成的銳二面角的大小為?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

一個正方體的六個面上分別標(biāo)有A,B,C,D,E,F,下圖是正方體的兩種不同放置,則與D面相對的面上的字母是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)為兩條直線,為兩個平面,則下列結(jié)論成立的是(  )
A.若,則B.若,則
C.若D.若

查看答案和解析>>

同步練習(xí)冊答案