【題目】脫貧是政府關(guān)注民生的重要任務(wù),了解居民的實際收入狀況就顯得尤為重要.現(xiàn)從某地區(qū)隨機抽取個農(nóng)戶,考察每個農(nóng)戶的年收入與年積蓄的情況進行分析,設(shè)第個農(nóng)戶的年收入(萬元),年積蓄(萬元),經(jīng)過數(shù)據(jù)處理得
(Ⅰ)已知家庭的年結(jié)余對年收入具有線性相關(guān)關(guān)系,求線性回歸方程;
(Ⅱ)若該地區(qū)的農(nóng)戶年積蓄在萬以上,即稱該農(nóng)戶已達小康生活,請預(yù)測農(nóng)戶達到小康生活的最低年收入應(yīng)為多少萬元?
附:在 中, 其中為樣本平均值.
科目:高中數(shù)學 來源: 題型:
【題目】某公司今年年初用25萬元引進一種新的設(shè)備,投入設(shè)備后每年收益為21萬元.該公司第年需要付出設(shè)備的維修和工人工資等費用的信息如下圖 .
(1)求;
(2)引進這種設(shè)備后,第幾年后該公司開始獲利;
(3)這種設(shè)備使用多少年,該公司的年平均獲利最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以坐標原點為極點, 軸的非負半軸為極軸建立極坐標系.已知點的極坐標為,曲線的參數(shù)方程為為參數(shù)).
(1)直線過且與曲線相切,求直線的極坐標方程;
(2)點與點關(guān)于軸對稱,求曲線上的點到點的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知圓C:(x﹣2)2+(y+1)2=5,過點P(5,0)且斜率為k的直線與圓C相交于不同的兩點A,B.
(I)求k的取值范圍;
(Ⅱ)若弦長|AB|=4,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了了解某班學生的會考合格率,要從該班70人中選30人進行考察分析,則70人的會考成績的全體是______,樣本是______,樣本量是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在定義域上是單調(diào)增函數(shù),求的最小值;
(2)若方程在區(qū)間上有兩個不同的實根,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于簡單隨機抽樣,下列說法正確的是( )
①它要求被抽取樣本的總體的個體數(shù)有限;
②它是從總體中逐個進行抽取的,在實踐中操作起來也比較方便;
③它是一種不放回抽樣;
④它是一種等可能抽樣,在整個抽樣過程中,每個個體被抽到的機會相等,從而保證了這種抽樣方法的公平性.
A.①②③B.①②④C.①③④D.①②③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在復(fù)平面內(nèi),復(fù)數(shù)3-4i,i(2+i)對應(yīng)的點分別是A,B,則線段AB的中點C對應(yīng)的復(fù)數(shù)為( )
A.-2+2iB.2-2i
C.-1+iD.1-i
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某蛋糕店每天制作生日蛋糕若干個,每個生日蛋糕的成本為50元,然后以每個100元的價格出售,如果當天賣不完,剩下的蛋糕作垃圾處理.現(xiàn)需決策此蛋糕店每天應(yīng)該制作幾個生日蛋糕,為此搜集并整理了100天生日蛋糕的日需求量(單位:個),得到如圖所示的柱狀圖,以100天記錄的各需求量的頻率作為每天各需求量發(fā)生的概率.若蛋糕店一天制作17個生日蛋糕.
(1)求當天的利潤(單位:元)關(guān)于當天需求量(單位:個,)的函數(shù)解析式;
(2)求當天的利潤不低于750元的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com