20.已知?jiǎng)訄AP與圓F1:(x+2)2+y2=49相切,且與圓F2:(x-2)2+y2=1相內(nèi)切,記圓心P的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)設(shè)Q為曲線C上的一個(gè)不在x軸上的動點(diǎn),O為坐標(biāo)原點(diǎn),過點(diǎn)F2作OQ的平行線交曲線C于M,N兩個(gè)不同的點(diǎn),求△QMN面積的最大值.

分析 (I)由已知條件推導(dǎo)出|PF1|+|PF2|=8>|F1F2|=6,從而得到圓心P的軌跡為以F1,F(xiàn)2為焦點(diǎn)的橢圓,由此能求出圓心P的軌跡C的方程.
(II)由MN∥OQ,知△QMN的面積=△OMN的面積,由此能求出△QMN的面積的最大值.

解答 解:(Ⅰ)設(shè)圓P的半徑為R,圓心P的坐標(biāo)為(x,y),
由于動圓P與圓F1:(x+2)2+y2=49相切,且與圓F2:(x-2)2+y2=1相內(nèi)切,
所以動圓P與圓F1只能內(nèi)切.…(1分)
所以|PF1|+|PF2|=7-R+R-1=6>|F1F2|=4.…(3分)
所以圓心圓心P的軌跡為以F1,F(xiàn)2為焦點(diǎn)的橢圓,
其中2a=6,2c=4,∴a=3,c=2,b2=a2-c2=5.
所以曲線C的方程為$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{5}$=1.…(4分)
(Ⅱ)設(shè)M(x1,y1),N(x2,y2),Q(x3,y3),直線MN的方程為x=my+2,
由$\left\{\begin{array}{l}x=my+2\\ \frac{x^2}{9}+\frac{y^2}{5}=1\end{array}\right.$可得:(5m2+9)y2+20my-25=0,
則y1+y2=-$\frac{20m}{5{m}^{2}+9}$,y1y2=-$\frac{25}{5{m}^{2}+9}$.…(5分)

所以|MN|=$\sqrt{(1+{m^2})|{{{({-\frac{20m}{{5{m^2}+9}}})}^2}+\frac{100}{{5{m^2}+9}}}|}$=$\frac{30(1+{m}^{2})}{5{m}^{2}+9}$   …(7分)

因?yàn)镸N∥OQ,∴△QMN的面積=△OMN的面積,
∵O到直線MN:x=my+2的距離d=$\frac{2}{\sqrt{1+{m}^{2}}}$.…(9分)
所以△QMN的面積$S=\frac{1}{2}|{MN}|•d=\frac{1}{2}×\frac{{30({m^2}+1)}}{{5{m^2}+9}}×\frac{2}{{\sqrt{{m^2}+1}}}=\frac{{30\sqrt{{m^2}+1}}}{{5{m^2}+9}}$.…(10分)
令$\sqrt{{m}^{2}+1}$=t,則m2=t2-1(t≥0),S=$\frac{30t}{5{t}^{2}+4}$=$\frac{30}{5t+\frac{4}{t}}$.
設(shè)$f(t)=5t+\frac{4}{t}(t≥1)$,則$f'(t)=5-\frac{4}{t^2}=\frac{{5{t^2}-4}}{t^2}$.
因?yàn)閠≥1,所以$f'(t)=\frac{{5{t^2}-4}}{t^2}>0$.
所以$f(t)=5t+\frac{4}{t}(t≥1)$,在[1,+∞)上單調(diào)遞增.
所以當(dāng)t=1時(shí),f(t)取得最小值,其值為9.…(11分)
所以△QMN的面積的最大值為$\frac{10}{3}$.…(12分)

點(diǎn)評 本題考查橢圓的標(biāo)準(zhǔn)方程、直線、圓、與橢圓等橢圓知識,考查推理論證能力、運(yùn)算求解能力,考查函數(shù)與方程思想、化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,AA1、BB1為圓柱OO1的母線,BC是底面圓O的直徑,D、E分別是AA1、CB1的中點(diǎn),BA=2,AC=1,B1C=3
(1)證明:DE∥平面ABC;
(2)求圓柱OO1的體積和表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知A、B兩點(diǎn)的坐標(biāo)為(-1,0)、(1,0),點(diǎn)P到A、B兩點(diǎn)的距離比是一個(gè)常數(shù)a(a>0),求點(diǎn)P的軌跡方程,并說明軌跡是什么圖形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.“a=-2”是“直線(a+2)x+3ay+1=0與直線(a-2)x+(a+2)y-3=0相互垂直”的( 。l件.
A.充要B.充分非必要
C.必要非充分D.既非充分也非必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD=4,點(diǎn)E、F分別為AB和PD的中點(diǎn).
(1)求證:直線AF∥平面PEC;
(2)求平面PAD與平面PEC所成銳二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.命題p:?x0∈R,${x_0}^2-{x_0}+1≤0$,¬p為( 。
A.?x∈R,x2-x+1<0B.?x∈R,x2-x+1>0C.?x∈R,x2-x+1>0D.?x∈R,x2-x+1≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}是等比數(shù)列,數(shù)列{bn}是等差數(shù)列,且a1=b1,a2=3,a3=9,a4=b14
(Ⅰ)求{bn}通項(xiàng)公式;
(Ⅱ)設(shè)cn=an-bn,求數(shù)列{cn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.一組數(shù)據(jù)X1,X2,…,Xn的平均數(shù)是3,方差是5,則數(shù)據(jù)3X1+2,3X2+2,…,3Xn+2 的平均數(shù)和方差分別是(  )
A.11,45B.5,45C.3,5D.5,15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.執(zhí)行如圖的程序框圖,則輸出的n為( 。
A.9B.11C.13D.15

查看答案和解析>>

同步練習(xí)冊答案