設(shè)函數(shù)f(x)=ax3+bx2+cx+3-a,(a,b,c∈R且a≠0).已知f(x)在x=-1時(shí)取得極大值2.
(Ⅰ)用關(guān)于a的代數(shù)式分別表示b與c;
(Ⅱ)若a=1時(shí),求f(x)的單調(diào)區(qū)間和極值.
(Ⅲ)求a的取值范圍.
解:(Ⅰ)由已知可得: 4分 (Ⅱ)當(dāng)a=1時(shí),b=2,c=1 5分
令 6分 時(shí),為減函數(shù) ,時(shí),為增函數(shù) 8分 ∴有極小值 9分 (Ⅲ) 10分 由 11分
要使有極大值,則: 13分 14分 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2012年普通高等學(xué)校招生全國(guó)統(tǒng)一考試全國(guó)卷數(shù)學(xué)理科 題型:044
設(shè)函數(shù)f(x)=ax+cosx,x∈[0,π].
(1)討論f(x)的單調(diào)性;
(2)設(shè)f(x)≤1+sinx,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:浙江省杭州十四中2012屆高三3月月考數(shù)學(xué)文科試題 題型:044
設(shè)函數(shù)f(x)=ax-lnx-3(a∈R),g(x)=.
(Ⅰ)若函數(shù) g(x)的圖象在點(diǎn)(0,0)處的切線(xiàn)也恰為f(x)圖象的一條切線(xiàn),求實(shí)數(shù)a的值;
(Ⅱ)是否存在實(shí)數(shù)a,對(duì)任意的x∈(0,e],都有唯一的x0∈[e-4,e],使得f(x0)=g(x)成立.若存在,求出a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.注:e是自然對(duì)數(shù)的底數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:新課標(biāo)高三數(shù)學(xué)集合與簡(jiǎn)易邏輯專(zhuān)項(xiàng)訓(xùn)練(河北) 題型:解答題
設(shè)函數(shù)f(x)=ax+2,
不等式|f(x)|<6的解集為(-1,2),
試求不等式≤1的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省高三3月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù) f (x)=ax-lnx-3(a∈R),g(x)=xe1-x.
(Ⅰ)若函數(shù) g(x) 的圖象在點(diǎn) (0,0) 處的切線(xiàn)也恰為 f (x) 圖象的一條切線(xiàn),求實(shí)數(shù) a的值;
(Ⅱ)是否存在實(shí)數(shù)a,對(duì)任意的 x∈(0,e],都有唯一的 x0∈[e-4,e],使得 f (x0)=g(x) 成立.若存在,求出a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
注:e是自然對(duì)數(shù)的底數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省高三單元測(cè)試文科數(shù)學(xué)試卷 題型:解答題
設(shè)函數(shù)f(x)=ax+ (a,b∈Z),曲線(xiàn)y=f(x)在點(diǎn)(2,f(2))處的切線(xiàn)方
程為y=3.
(1)求f(x)的解析式;
(2)證明:曲線(xiàn)y=f(x)上任一點(diǎn)的切線(xiàn)與直線(xiàn)x=1和直線(xiàn)y=x所圍三角形的面積為定值,
并求出此定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com