若函數(shù)f(x)=ax3-bx+4,當(dāng)x=2時(shí),函數(shù)f(x)有極值-.
(1)求函數(shù)的解析式.
(2)若方程f(x)=k有3個(gè)不同的根,求實(shí)數(shù)k的取值范圍.
(1) f(x)=x3-4x+4.(2)-<k<.
【解析】
試題分析:f′(x)=3ax2-b.
(1)由題意得解得
故所求函數(shù)的解析式為f(x)=x3-4x+4.
(2)由(1)可得f′(x)=x2-4=(x-2)(x+2),
令f′(x)=0,得x=2或x=-2.
當(dāng)x變化時(shí),f′(x),f(x)的變化情況如下表:
x |
(-∞,-2) |
-2 |
(-2,2) |
2 |
(2,+∞) |
f′(x) |
+ |
0 |
- |
0 |
+ |
f(x) |
? |
? |
- |
因此,當(dāng)x=-2時(shí),f(x)有極大值,
當(dāng)x=2時(shí),f(x)有極小值-,
所以函數(shù)f(x)=x3-4x+4的圖象大致如圖所示.
若f(x)=k有3個(gè)不同的根,則直線y=k與函數(shù)f(x)的圖象有3個(gè)交點(diǎn),所以-<k<.
考點(diǎn):本題主要考查函數(shù)的解析式,應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值。
點(diǎn)評(píng):中檔題,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值,是導(dǎo)數(shù)的應(yīng)用中的基本問(wèn)題。本題(II)應(yīng)用導(dǎo)數(shù),通過(guò)研究函數(shù)的單調(diào)性、極值等,對(duì)函數(shù)的圖象有了充分的了解,明確了函數(shù)零點(diǎn)情況。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若函數(shù)f(x)=ax+b(a0)有一個(gè)零點(diǎn)是-2,則函數(shù)g(x)=bx2-ax的零點(diǎn)是( )
A.2,0 B.2, C.0, D.0,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若函數(shù)f(x)=ax-x-a(a>0,a≠1)有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若函數(shù)f(x)=ax-x-a(a>0,且a≠1)有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若函數(shù)f(x)=ax+(a∈R),則下列結(jié)論正確的是( )
A.∀a∈R,函數(shù)f(x)在(0,+∞)上是增函數(shù)
B.∀a∈R,函數(shù)f(x)在(0,+∞)上是減函數(shù)
C.∃a∈R,函數(shù)f(x)為奇函數(shù)
D.∃a∈R,函數(shù)f(x)為偶函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若函數(shù)f(x)=ax(a>0,a≠1)在[-1,2]上的最大值為4,最小值為m,且函數(shù)g(x)=(1-4m)在[0,+∞)上是增函數(shù),則a=________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com