若函數(shù)f(x)=ax3-bx+4,當(dāng)x=2時(shí),函數(shù)f(x)有極值-.

(1)求函數(shù)的解析式.

(2)若方程f(x)=k有3個(gè)不同的根,求實(shí)數(shù)k的取值范圍.

 

【答案】

(1) f(x)=x3-4x+4.(2)-<k<.

【解析】

試題分析:f′(x)=3ax2-b.

(1)由題意得解得

故所求函數(shù)的解析式為f(x)=x3-4x+4.

(2)由(1)可得f′(x)=x2-4=(x-2)(x+2),

令f′(x)=0,得x=2或x=-2.

當(dāng)x變化時(shí),f′(x),f(x)的變化情況如下表:

x

(-∞,-2)

-2

(-2,2)

2

(2,+∞)

f′(x)

0

0

f(x)

?

?

因此,當(dāng)x=-2時(shí),f(x)有極大值

當(dāng)x=2時(shí),f(x)有極小值-,

所以函數(shù)f(x)=x3-4x+4的圖象大致如圖所示.

若f(x)=k有3個(gè)不同的根,則直線y=k與函數(shù)f(x)的圖象有3個(gè)交點(diǎn),所以-<k<.

考點(diǎn):本題主要考查函數(shù)的解析式,應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值。

點(diǎn)評(píng):中檔題,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值,是導(dǎo)數(shù)的應(yīng)用中的基本問(wèn)題。本題(II)應(yīng)用導(dǎo)數(shù),通過(guò)研究函數(shù)的單調(diào)性、極值等,對(duì)函數(shù)的圖象有了充分的了解,明確了函數(shù)零點(diǎn)情況。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=ax+b(a0)有一個(gè)零點(diǎn)是-2,則函數(shù)g(x)=bx2-ax的零點(diǎn)是(     )

A.2,0 B.2,      C.0,      D.0,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=axxa(a>0,a≠1)有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=ax-x-a(a>0,且a≠1)有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是    

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=ax(a∈R),則下列結(jié)論正確的是(  )

A.∀a∈R,函數(shù)f(x)在(0,+∞)上是增函數(shù)

B.∀a∈R,函數(shù)f(x)在(0,+∞)上是減函數(shù)

C.∃a∈R,函數(shù)f(x)為奇函數(shù)

D.∃a∈R,函數(shù)f(x)為偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=ax(a>0,a≠1)在[-1,2]上的最大值為4,最小值為m,且函數(shù)g(x)=(1-4m)在[0,+∞)上是增函數(shù),則a=________.

查看答案和解析>>

同步練習(xí)冊(cè)答案