已知命題P:方程x2+mx+1=0有兩個不相等的負實數(shù)根;命題Q:函數(shù)f(x)=lg[4x2+(m-2)x+1]的定義域為實數(shù)集R,若P或Q為真,P且Q為假,求實數(shù)m的取值范圍.
分析:先求出命題p,q為真時,m的范圍,據(jù)復合命題的真假與構成其簡單命題真假的關系,得到p,q有一真一假,分類討論求出m的范圍.
解答:解:若P真,則
△=m2-4>0
x1x2=1>0
x1+x2=-m<0
,∴m>2
若Q真,則4x2+(m-2)x+1>0對x∈R恒成立,則△=(m-2)2-16<0
∴-2<m<6
∵P或Q為真,P且Q為假
∴P、Q中一真一假①
m>2
m≤-2或m≥6

∴m≥6
m≤2
-2<m<6
∴-2<m≤2
綜上,m≥6或-2<m≤2
點評:本題考查二次方程的實根的符號問題應該從判別式的符號及韋達定理入手考慮;考查復合命題的真假與構成其簡單命題的真假有關.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知命題p:方程x2+mx+1=0有兩個不等的負實根;q:方程mx2+(m-1)x+m=0無實根.若“p或q”為真,p且q”為假,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題P:“方程x2+
y2m
=1表示焦點在y軸上的橢圓”;命題Q:“方程2x2-4x+m=0沒有實數(shù)根”.若P∧Q假,P∨Q為真,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題P:方程x2-2mx+m=0沒有實數(shù)根;
命題Q:?x∈R,x2+mx+1≥0.
(1)寫出命題Q的否定“¬Q”;
(2)如果“P∨Q”為真命題,“P∧Q”為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:方程x2+mx+1=0有兩個不等的正實數(shù)根,命題q:方程4x2+4(m+2)x+1=0無實數(shù)根.
(1)若p為真命題,求m的取值范圍;
(2)若q為真命題,求m的取值范圍;
(3)若“p或q”為真命題,求m的取值范圍.

查看答案和解析>>

同步練習冊答案