(13分)已知函數(shù)

(1)若,求曲線在點(diǎn)處的切線方程;

(2)討論函數(shù)的單調(diào)性.

 

【答案】

(1).

(2)當(dāng)時(shí),單調(diào)遞減,在單調(diào)遞增;當(dāng)時(shí), 單調(diào)遞增,在單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞增,在單調(diào)遞減;當(dāng)時(shí),單調(diào)遞減,在單調(diào)遞增。

【解析】

試題分析:(1)通過求導(dǎo)數(shù),確定得到切線的斜率,利用直線方程的點(diǎn)斜式,即得解.

(2)求導(dǎo)數(shù),求駐點(diǎn),得.分以下情況討論.

1 ;2 ;3;4; 5等,明確函數(shù)的單調(diào)區(qū)間.

試題解析:(1)時(shí),,,所以所求切線方程為,即.

(2),令.

1當(dāng)時(shí),,所以單調(diào)遞減,在單調(diào)遞增;

2當(dāng)時(shí),,所以單調(diào)遞增,在單調(diào)遞減;

3當(dāng)時(shí),,所以單調(diào)遞增;

4當(dāng)時(shí),,所以單調(diào)遞增,在單調(diào)遞減;

5當(dāng)時(shí),,所以單調(diào)遞減,在單調(diào)遞增。

綜上,當(dāng)時(shí),單調(diào)遞減,在單調(diào)遞增;當(dāng)時(shí), 單調(diào)遞增,在單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞增,在單調(diào)遞減;當(dāng)時(shí),單調(diào)遞減,在單調(diào)遞增。

考點(diǎn):導(dǎo)數(shù)的幾何意義,應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù).(1)若時(shí)取得極值,求的值;(2)求的單調(diào)區(qū)間; (3)求證:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江西省高三第三次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(1)若函數(shù)在區(qū)間上存在零點(diǎn),求實(shí)數(shù)的取值范圍;

(2)問:是否存在常數(shù),當(dāng)時(shí),的值域?yàn)閰^(qū)間,且的長度為.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年重慶市高二上學(xué)期期中考試?yán)砜茢?shù)學(xué)卷 題型:解答題

(本小題滿分12分)

已知函數(shù),

(1)    若,且的定義域是[– 1,1],Px1,y1),Qx2,y2)是其圖象上任意兩點(diǎn)(),設(shè)直線PQ的斜率為k,求證:

(2)    若,且的定義域是,

求證:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年山東省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)卷 題型:解答題

(滿分14分)已知函數(shù)

(1)若,求a的取值范圍;

(2)證明:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:重慶市2009-2010學(xué)年度下期期末考試高二數(shù)學(xué)試題(文科) 題型:解答題

 

1.   (本小題滿分13分)

已知函數(shù)

(1)  若x = 0處取得極值為 – 2,求ab的值;

(2)  若上是增函數(shù),求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊答案