精英家教網 > 高中數學 > 題目詳情
圓2x2+2y2=1與直線x•sinθ+y-1=0(θ∈R,θ≠
π
2
+kπ,k∈Z)
位置關系是( 。
分析:把圓的方程化為標準方程后,找出圓心坐標和圓的半徑r,利用點到直線的距離公式表示出圓心到已知直線的距離d,根據正弦函數的值域及θ的取值可得d小于r,從而判斷出圓與直線相離.
解答:解:把圓的方程化為標準方程得:x2+y2=
1
2
,
∴圓心坐標為(0,0),半徑r=
2
2
,
θ∈R,θ≠
π
2
+kπ,k∈Z
,
∴圓心到直線x•sinθ+y-1=0的距離d=
1
1+sin2θ
2
2
=r,
則直線與圓的位置關系為相離.
故選C
點評:此題考查了直線與圓的位置關系,涉及的知識有:圓的標準方程,點到直線的距離公式,正弦函數的定義域及值域,直線與圓的位置關系由d與r的大小關系來判斷:當0≤d<r時,直線與圓相交;當d=r時,直線與圓相切;當d>r時,直線與圓相離.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

圓2x2+2y2=1與直線xsinq+y-1=0 的位置關系是(  )
A、相交B、相切C、相離或相切D、不能確定

查看答案和解析>>

科目:高中數學 來源: 題型:

2x2+2y2=1與直線xsinθ+y-1=0(θ≠
π
2
+kπ,k∈Z)
的位置關系是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

圓2x2+2y2=1與直線xsinθ+y-1=0(θ∈R,θ≠
π2
+kπ,k∈Z)的位置關系是
相離或相切
相離或相切

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•嘉定區(qū)一模)直線xcosθ+y-1=0(θ∈R且θ≠kπ,k∈Z)與圓2x2+2y2=1的位置關系是( 。

查看答案和解析>>

同步練習冊答案