如圖,已知棱柱ABCD-A1B1C1D1的底面是正方形,且AA1⊥平面ABCD,E為棱AA1的中點(diǎn),F(xiàn)為線段BD1的中點(diǎn).
(1)證明:EF∥平面ABCD;    
(2)證明:EF⊥平面BB1D1D.
考點(diǎn):直線與平面垂直的判定,直線與平面平行的判定
專題:空間位置關(guān)系與距離
分析:(1)根據(jù)中的找出平行線,利用判斷定理證明.
(2)利用線線,線面,垂直的性質(zhì),判斷定理轉(zhuǎn)換求解.
解答: (14分)
證明:(1)連接AC交BD與O,連接OF,
∵ABCD是正方形,
∴O是BD的中點(diǎn),BD⊥OA,
又∵F為線段BD1的中點(diǎn),
∴OF∥DD1且OF=
1
2
DD1,
∵E為棱AA1的中點(diǎn),
∴OF∥AE且OF=AE,
∴EF∥OA,
∵OA?平面ABCD,且EF?平面ABCD,
∴EF∥平面ABCD,
(2)∵AA1⊥平面ABCD且AA1∥DD1,
∴DD1⊥平面ABCD,
∴DD1⊥OA,
∵BD⊥OA且BD?平面BB1D1D,D1D?平面BB1D1D,BD∩D1D=D,
∴OA⊥平面BB1D1D.
∵EF∥OA,
∴EF⊥平面BB1D1D.
點(diǎn)評(píng):本題主要考查了直線與平面垂直的判定,考查了直線與平面平行的判定,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B,P三點(diǎn)共線,O為空間不與A,B,P共線的任意一點(diǎn),
OP
OA
OB
,求實(shí)數(shù)α+β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,求證:
a2-b2
cosA+cosB
+
b2-c2
cosB+cosC
+
c2-a2
cosC+cosA
=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(x1,y1)是函數(shù)f(x)=2x上一點(diǎn),點(diǎn)Q(x2,y2)是函數(shù)g(x)=2lnx上一點(diǎn),若存在x1,x2使得|PQ|≤
2
5
5
成立,則x1的值為( 。
A、
1
5
B、
2
5
C、
1
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

6位同學(xué)站在一排照相,按下列要求,各有多少種不同排法?
①甲、乙必須站在排頭或排尾
②甲、乙.丙三人相鄰
③甲、乙、丙三人互不相鄰
④甲不在排頭,乙不在排尾
⑤若其中甲不站在左端,也不與乙相鄰.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校開設(shè)A類課3門,B類課5門,一位同學(xué)從中共選3門,若要求兩類課程中各至少選一門,則不同的選法共有
( 。
A、15種B、30種
C、45種D、90種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知過拋物線y2=12x焦點(diǎn)的一條直線與拋物線相交于A,B兩點(diǎn),若|AB|=14,則線段AB的中點(diǎn)到y(tǒng)軸的距離等于( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項(xiàng)等差數(shù)列{an}滿足:an2-an+1-an-1=0(n≥2),等比數(shù)列{bn}滿足:bn+1•bn-1-2bn=0(n≥2),則log2(an+bn)=( 。
A、-1或2B、0或2C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在斜三棱柱ABC-A1B1C1中,側(cè)面ACC1A1與側(cè)面CBB1C1都是菱形,∠ACC1=∠CC1B1=60°,AC=2.
(Ⅰ)求證:AB1⊥CC1
(Ⅱ)若AB1=
6
,求二面角C-AB1-A1

查看答案和解析>>

同步練習(xí)冊(cè)答案