(1)比較x6+1與x4+x2的大小,其中x∈R;

(2)設(shè)a∈R,且a≠0,試比較a與的大小.

(1)當(dāng)x=±1時(shí),x6+1=x4+x2;當(dāng)x≠±1時(shí),x6+1>x4+x2.(2)當(dāng)-1<a<0或a>1時(shí),a>;當(dāng)a<-1或0<a<1時(shí),a<;當(dāng)a=±1時(shí),a=.


解析:

(1)(x6+1)-(x4+x2

=x6-x4-x2+1=x4(x2-1)-(x2-1)

=(x2-1)(x4-1)=(x2-1)(x2-1)(x2+1)

=(x2-1)2(x2+1).

當(dāng)x=±1時(shí),x6+1=x4+x2;當(dāng)x≠±1時(shí),x6+1>x4+x2.

(2)a-==

當(dāng)-1<a<0或a>1時(shí),a>;當(dāng)a<-1或0<a<1時(shí),a<;當(dāng)a=±1時(shí),a=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:中學(xué)教材標(biāo)準(zhǔn)學(xué)案 數(shù)學(xué) 高二上冊(cè) 題型:044

解答題

比較x6+1與x4+x2的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:教材完全解讀 高中數(shù)學(xué) 必修5(人教B版課標(biāo)版) 人教B版課標(biāo)版 題型:044

比較x6+1與x4+x2的大小,其中x∈R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:高考總復(fù)習(xí)全解 數(shù)學(xué) 一輪復(fù)習(xí)·必修課程。ㄈ私虒(shí)驗(yàn)版) B版 人教實(shí)驗(yàn)版 B版 題型:044

(1)比較x6+1與x4+x2的大小,其中x∈R.

(2)若x<y<0,試比較(x2+y2)(x-y)與(x2-y2)(x+y)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

比較x6+1與x4+x2的大小,其中x∈R.

查看答案和解析>>

同步練習(xí)冊(cè)答案