【題目】已知線段AB的端點(diǎn)B在圓C1:x2+(y﹣4)2=16上運(yùn)動(dòng),端點(diǎn)A的坐標(biāo)為(4,0),線段AB中點(diǎn)為M, (Ⅰ)試求M點(diǎn)的軌C2方程;
(Ⅱ)若圓C1與曲線C2交于C,D兩點(diǎn),試求線段CD的長(zhǎng).

【答案】解:(Ⅰ)設(shè)M(x,y),B(x′,y′), 則由題意可得: ,解得: ,
∵點(diǎn)B在圓C1:x2+(y﹣4)2=16上,
∴(x′)2+(y′﹣4)2=16,
∴(2x﹣4)2+(2y﹣4)2=16,即(x﹣2)2+(y﹣2)2=4.
∴軌跡C2方程為(x﹣2)2+(y﹣2)2=4;
(Ⅱ)由方程組 ,解得直線CD的方程為x﹣y﹣1=0,
圓C1 的圓心C1(0,4)到直線CD的距離為
圓C1 的半徑為4,
∴線段CD的長(zhǎng)為
【解析】(Ⅰ)設(shè)出M和B的坐標(biāo),由中點(diǎn)坐標(biāo)公式把B的坐標(biāo)用m的坐標(biāo)表示,代入圓C1的方程得答案;(Ⅱ)求出圓C1的圓心坐標(biāo)和半徑,求出圓心到直線CD的距離利用勾股定理得答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C的圓心(2,0),點(diǎn)A(﹣1,1)在圓C上,則圓C的方程是;以A為切點(diǎn)的圓C的切線方程是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題p:函數(shù)f(x)=logax在區(qū)間(0,+∞)上是單調(diào)遞增函數(shù);命題q:不等式(a﹣2)x2+2(a﹣2)x﹣4<0對(duì)任意實(shí)數(shù)x恒成立.若p∨q為真命題,且p∧q為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓O為Rt△ABC的外接圓,AB=AC,BC=4,過(guò)圓心O的直線l交圓O于P,Q兩點(diǎn),則 的取值范圍是(
A.[﹣8,﹣1]
B.[﹣8,0]
C.[﹣16,﹣1]
D.[﹣16,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lnx+2x+x﹣1,若f(x2﹣4)<2,則實(shí)數(shù)x的取值范圍是( )
A.(﹣2,2)
B.(2,
C.(﹣ ,﹣2)
D.(﹣ ,﹣2)∪(2,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD為∠ACB的平分線,點(diǎn)E在線段AC上,CE=4.如圖2所示,將△BCD沿CD折起,使得平面BCD⊥平面ACD,連接AB,設(shè)點(diǎn)F是AB的中點(diǎn).
(1)求證:DE⊥平面BCD;
(2)若EF∥平面BDG,其中G為直線AC與平面BDG的交點(diǎn),求三棱錐B﹣DEG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和 . (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若 ,求數(shù)列{anbn2}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 為空間中兩條不同的直線, 為空間中兩個(gè)不同的平面,下列命題正確的是( )
A.若
B.若 ,則
C.若 內(nèi)的射影互相平行,則
D.若 ,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在 中, .

(1)求 的面積之比;
(2)若 中點(diǎn), 交于點(diǎn) ,且 ,求 的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案