分析 由題意可得$\overrightarrow{CM}$•$\overrightarrow{CN}$=($\overrightarrow{CO}$+$\overrightarrow{OM}$)•($\overrightarrow{CO}$+$\overrightarrow{ON}$)=${\overrightarrow{CO}}^{2}$-1,由點C在直線AB上,則當C在AB中點時候,OC⊥AB,OC最小為等邊三角形AOB的高,從而求得$\overrightarrow{CM}$•$\overrightarrow{CN}$的最小值.
解答 解:由題意可得$\overrightarrow{CM}$•$\overrightarrow{CN}$=($\overrightarrow{CO}$+$\overrightarrow{OM}$)•($\overrightarrow{CO}$+$\overrightarrow{ON}$)=${\overrightarrow{CO}}^{2}$+$\overrightarrow{CO}$•($\overrightarrow{OM}$+$\overrightarrow{ON}$)+$\overrightarrow{OM}•\overrightarrow{ON}$,
∵MN是圓O的任意一條直徑,∴$\overrightarrow{OM}$+$\overrightarrow{ON}$=$\overrightarrow{0}$,$\overrightarrow{OM}•\overrightarrow{ON}$=-1,
∴$\overrightarrow{CM}$•$\overrightarrow{CN}$=${\overrightarrow{CO}}^{2}$+0-1=${\overrightarrow{CO}}^{2}$-1.
要求$\overrightarrow{CM}$•$\overrightarrow{CN}$的最小值問題就是求${\overrightarrow{CO}}^{2}$的最小值,
由于$\frac{1}{2}$$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$(λ∈R),故點C在直線AB上,則當C在AB中點時候,
OC⊥AB,OC最小為等邊三角形AOB的高線,為$\frac{\sqrt{3}}{2}$,此時${\overrightarrow{CO}}^{2}$=$\frac{3}{4}$,
故$\overrightarrow{CM}$•$\overrightarrow{CN}$的最小值為${\overrightarrow{CO}}^{2}$-1=-$\frac{1}{4}$,
故答案為:-$\frac{1}{4}$.
點評 本題主要考查兩個向量的加減法的法則,以及其幾何意義,兩個向量的數(shù)量積的運算,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | c<b<a | B. | c<a<b | C. | b<a<c | D. | b<c<a |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com