定義在實(shí)數(shù)集R上的函數(shù)f(x),如果存在函數(shù)g(x)=Ax+B(A,B為常數(shù))使得f(x)≥g(x)對(duì)任意的x∈R都成立,則稱g(x)為函數(shù)f(x)的一個(gè)承托函數(shù),則下列說法正確的是(  )
A、函數(shù)f(x)=x2-2x不存在承托函數(shù)
B、g(x)=x為函數(shù)f(x)=sinx的一個(gè)承托函數(shù)
C、g(x)=x為函數(shù)f(x)=ex-1的一個(gè)承托函數(shù)
D、函數(shù)f(x)=
2x
x2-x+1
不存在承托函數(shù)
分析:函數(shù)g(x)=Ax+B(A,B為常數(shù))是函數(shù)f(x)的一個(gè)承托函數(shù),即說明函數(shù)f(x)的圖象恒在函數(shù)g(x)的上方(至多有一個(gè)交點(diǎn))A、g(x)=-1是函數(shù)f(x)=x2-2x的一個(gè)承托函數(shù);故A做;B、舉例可以說明,當(dāng)x=
π
2
時(shí),可知f(x)<g(x),可知結(jié)論錯(cuò)誤;C、要說明g(x)=x為函數(shù)f(x)=ex-1的一個(gè)承托函數(shù);即證明F(x)=ex-x-1的圖象恒在x軸上方;④g(x)=-1是函數(shù)f(x)=
2x
x2-x+1
的一個(gè)承托函數(shù),因此D錯(cuò).
解答:解:A、令g(x)=-1,則總有f(x)≥g(x)對(duì)任意的x∈R都成立,因此g(x)=-1是函數(shù)f(x)=x2-2x的一個(gè)承托函數(shù),故A錯(cuò);
B、令x=
π
2
,則g(
π
2
)=
π
2
>f(
π
2
)=1,因此g(x)=x不是函數(shù)f(x)=sinx的一個(gè)承托函數(shù),故B錯(cuò);
C、令F(x)=ex-x-1,F(xiàn)′(x)=ex-1=0,得x=0,
當(dāng)x<0時(shí),F(xiàn)′(x)<0,F(xiàn)(x)單調(diào)遞減,
當(dāng)x>0時(shí),F(xiàn)′(x)>0,F(xiàn)(x)單調(diào)遞增,
∴當(dāng)x=0時(shí),F(xiàn)(x)取最小值:0,
即F(x)=ex-x-1≥0恒成立,即f(x)≥g(x)恒成立,故C正確;
D、令g(x)=-1,則f(x)-g(x)=
2x
x2-x+1
+1
=f(x)=
x2+x +1
x2-x+1
>0,
∴總有f(x)≥g(x)對(duì)任意的x∈R都成立,因此g(x)=-1是函數(shù)f(x)=
2x
x2-x+1
的一個(gè)承托函數(shù),故D錯(cuò);
故選C.
點(diǎn)評(píng):本題是以抽象函數(shù)為承托,考查學(xué)生的創(chuàng)新能力,屬中檔題,抽象函數(shù)是相對(duì)于給出具體解析式的函數(shù)來說的,它雖然沒有具體的表達(dá)式,但是有一定的對(duì)應(yīng)法則,滿足一定的性質(zhì),這種對(duì)應(yīng)法則及函數(shù)的相應(yīng)的性質(zhì)是解決問題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在實(shí)數(shù)集R上的函數(shù)f(x),如果存在函數(shù)g(x)=Ax+B(A、B為常數(shù)),使得f(x)≥g(x)對(duì)一切實(shí)數(shù)x都成立,那么稱g(x)為函數(shù)f(x)的一個(gè)承托函數(shù).給出如下四個(gè)命題:
①對(duì)于給定的函數(shù)f(x),其承托函數(shù)可能不存在,也可能有無數(shù)個(gè);
②定義域和值域都是R的函數(shù)f(x)不存在承托函數(shù);
③g(x)=2x為函數(shù)f(x)=|3x|的一個(gè)承托函數(shù);
g(x)=
12
x
為函數(shù)f(x)=x2的一個(gè)承托函數(shù).
其中正確的命題有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在實(shí)數(shù)集R上的函數(shù)f(x),如果存在函數(shù)g(x)=Ax+B(A,B為常數(shù)),使得f(x)≥g(x)對(duì)一切實(shí)數(shù)都成立,那么稱為g(x)為函數(shù)f(x)的一個(gè)承托函數(shù),給出如下命題:
①定義域和值域都是R的函數(shù)f(x)不存在承托函數(shù);
②g(x)=2x為函數(shù)f(x)=ex的一個(gè)承托函數(shù);
③g(x)=
1
2
x為函數(shù)f(x)=x2的一個(gè)承托函數(shù);
④對(duì)給定的函數(shù)f(x),其承托函數(shù)可能不存在,也可能有無數(shù)個(gè)
其中正確的命題的個(gè)數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在實(shí)數(shù)集R上的函數(shù)f(x),如果存在函數(shù)g(x)=Ax+B(A,B為常數(shù)),使得f(x)≥g(x)對(duì)一切實(shí)數(shù)x都成立,那么稱g(x)為函數(shù)f(x)的一個(gè)承托函數(shù).
下列說法正確的有:
①②
①②
.(寫出所有正確說法的序號(hào))
①對(duì)給定的函數(shù)f(x),其承托函數(shù)可能不存在,也可能有無數(shù)個(gè);
②g(x)=ex為函數(shù)f(x)=ex的一個(gè)承托函數(shù);
③函數(shù)f(x)=
x
x2+x+1
不存在承托函數(shù);
④函數(shù)f(x)=
1
5x2-4x+11
,若函數(shù)g(x)的圖象恰為f(x)在點(diǎn)p(1,
1
2
)
處的切線,則g(x)為函數(shù)f(x)的一個(gè)承托函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在實(shí)數(shù)集R上的函數(shù)f(x),同時(shí)滿足以下三個(gè)條件:
①f(-1)=2;②x<0時(shí),f(x)>1;③對(duì)任意實(shí)數(shù)x,y都有f(x+y)=f(x)f(y);
(1)求f(0),f(-4)的值; 
(2)判斷函數(shù)f(x)的單調(diào)性,并求出不等式f(-4x2)f(10x)≥
116
的解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案