設(shè)函數(shù)為實(shí)數(shù).

(Ⅰ)已知函數(shù)f(x)在x=1處取得極值,求a的值;

(Ⅱ)已知不等式對(duì)任意a∈(0,+∞)都成立,求實(shí)數(shù)x的取值范圍.

答案:
解析:

  解:本題主要考查導(dǎo)數(shù)的概念和計(jì)算,導(dǎo)數(shù)與函數(shù)極值的關(guān)系,不等式的性質(zhì)和綜合運(yùn)用有關(guān)知識(shí)解決問題的能力.本小題滿分12分.

  (Ⅰ),由于函數(shù)時(shí)取得極值,所以

  即

  (Ⅱ)方法一:

  由題設(shè)知:對(duì)任意都成立.

  即對(duì)任意都成立

  設(shè),則對(duì)任意為單調(diào)遞增函數(shù)

  所以對(duì)任意,恒成立的充分必要條件是

  即,于是的取值范圍是

  方法二:

  由題設(shè)知:對(duì)任意都成立,

  即對(duì)任意都成立.

  于是對(duì)任意都成立,即

  ,于是的取值范圍是

  試題解析:本題考查運(yùn)用導(dǎo)數(shù)求三次函數(shù)的單調(diào)區(qū)間,從而求字母參數(shù)的取值范圍,屬于中等題

  高考考點(diǎn):導(dǎo)數(shù)的三大應(yīng)用


提示:

要熟練掌握導(dǎo)數(shù)的三大應(yīng)用:①求斜率:在曲線的某點(diǎn)有切線,則求導(dǎo)后把橫坐標(biāo)代進(jìn)去,則為其切線的斜率;②有關(guān)極值:就是某處有極值,則把它代入其導(dǎo)數(shù),則為;③單調(diào)性的判斷:單調(diào)遞增;,單調(diào)遞減,和一些常見的導(dǎo)數(shù)的求法.要熟練一些函數(shù)的單調(diào)性的判斷方法有,作差法,作商法,導(dǎo)數(shù)法;對(duì)于含參范圍問題,解決方法有,當(dāng)參數(shù)為一次時(shí),可直接解出通過均值不等式求最值把其求出;當(dāng)為二次時(shí),可用判別式法或?qū)?shù)法等求.而此種題型函數(shù)與方程仍是高考的必考,以函數(shù)為背景、導(dǎo)數(shù)為工具,以分析、探求、轉(zhuǎn)化函數(shù)的有關(guān)性質(zhì)為設(shè)問方式,重點(diǎn)考查函數(shù)的基本性質(zhì),導(dǎo)數(shù)的應(yīng)用,以及函數(shù)與方程、分類與整合等數(shù)學(xué)思想.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(09年萊蕪二中診斷一文)(本小題滿分12分)設(shè)函數(shù)為實(shí)數(shù)。

   (1)已知函數(shù)在x=1處取得極值,求a的值;

   (2)已知不等式都成立,求實(shí)數(shù)x的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

()(本小題滿分12分)

設(shè)函數(shù)為實(shí)數(shù)。

(Ⅰ)已知函數(shù)處取得極值,求的值;

(Ⅱ)已知不等式對(duì)任意都成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)為實(shí)數(shù),且,

   (Ⅰ)若,曲線通過點(diǎn),且在點(diǎn)處的切線垂直于軸,求的表達(dá)式;

   (Ⅱ)在(Ⅰ)在條件下,當(dāng)時(shí),是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;

   (Ⅲ)設(shè),,,且為偶函數(shù),證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)為實(shí)數(shù),且,

   (Ⅰ)若,曲線通過點(diǎn),且在點(diǎn)處的切線垂直于軸,求的表達(dá)式;

   (Ⅱ)在(Ⅰ)在條件下,當(dāng)時(shí),是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;

   (Ⅲ)設(shè),,且為偶函數(shù),證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣西柳鐵一中高三第三次月考文科數(shù)學(xué)試卷 題型:解答題

設(shè)函數(shù)為實(shí)數(shù)。

(Ⅰ)已知函數(shù)處取得極值,求的值;

(Ⅱ)已知不等式對(duì)任意都成立,求實(shí)數(shù)的取值范圍。

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案