【題目】在四棱錐中,,,.
(1)若點(diǎn)為的中點(diǎn),求證:平面;
(2)當(dāng)平面平面時(shí),求二面角的余弦值.
【答案】(1)詳見(jiàn)解析(2)
【解析】
(1)通過(guò)作的中點(diǎn),連結(jié),,通過(guò)中位線定理分別證明,來(lái)證明平面平面,從而證明平面
(2)當(dāng)平面平面時(shí),再結(jié)合題干信息,可作的中點(diǎn),連接,以的方向?yàn)?/span>軸正方向,的方向?yàn)?/span>軸正方向,的方向?yàn)?/span>軸正方向建立空間直角坐標(biāo)系,用向量法來(lái)求解二面角的余弦值
解:(1)取的中點(diǎn),連結(jié),.
∵為等邊三角形,∴.
∴,又,
∴四邊形是平行四邊形,∴.
又∵平面,平面,
∴平面.
∵為的中點(diǎn),為的中點(diǎn),∴.
同理:平面.
∵,∴平面平面.
∵平面,∴平面.
(2)取的中點(diǎn),連結(jié),,則,.
∵平面平面,,
∴平面,∴,,.
以為坐標(biāo)原點(diǎn),的方向?yàn)?/span>軸正方向,
建立空間直角坐標(biāo)系.
則,,.
∴,,
平面的一個(gè)法向量為.
設(shè)平面的法向量為,則,即.
令,得,,∴平面的一個(gè)法向量,
∴.
設(shè)二面角的大小為,結(jié)合圖形可知.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】5張獎(jiǎng)券中有2張是中獎(jiǎng)的,先由甲抽1張,然后由乙抽1張,抽后不放回,求:
(1)甲中獎(jiǎng)的概率;
(2)甲、乙都中獎(jiǎng)的概率;
(3)只有乙中獎(jiǎng)的概率;
(4)乙中獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知橢圓上任意一點(diǎn)到其兩個(gè)焦點(diǎn),的距離之和等于,焦距為2c,圓,,是橢圓的左、右頂點(diǎn),AB是圓O的任意一條直徑,四邊形面積的最大值為.
(1)求橢圓C的方程;
(2)如圖,若直線與圓O相切,且與橢圓相交于M,N兩點(diǎn),直線與平行且與橢圓相切于P(O,P兩點(diǎn)位于的同側(cè)),求直線,距離d的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)到點(diǎn)的距離比它到直線距離小
(Ⅰ)求點(diǎn)的軌跡的方程;
(Ⅱ)過(guò)點(diǎn)作互相垂直的兩條直線,它們與(Ⅰ)中軌跡分別交于點(diǎn)及點(diǎn),且分別是線段的中點(diǎn),求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的部分圖象如圖所示.
(1)求的值;
(2)求在上的最大值和最小值;
(3)不畫圖,說(shuō)明函數(shù)的圖象可由的圖象經(jīng)過(guò)怎樣變化得到.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠生產(chǎn)一種儀器的元件,由于受生產(chǎn)能力和技術(shù)水平的限制,會(huì)產(chǎn)生一些次品,根據(jù)經(jīng)驗(yàn)知道,其次品率與日產(chǎn)量(萬(wàn)件)之間滿足關(guān)系:()已知每生產(chǎn)1萬(wàn)件合格的儀器可以盈利2萬(wàn)元,但每生產(chǎn)1萬(wàn)件次品將虧損1萬(wàn)元,故廠方希望定出合適的日產(chǎn)量.(注:次品率=次品數(shù)/生產(chǎn)量)
(1)試將生產(chǎn)這種儀器元件每天的盈利額(萬(wàn)元)表示為日產(chǎn)量(萬(wàn)件)的函數(shù);
(2)當(dāng)日產(chǎn)量為多少時(shí),可獲得最大利潤(rùn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)當(dāng)時(shí),在定義域內(nèi)恒成立,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)若函數(shù)在上是單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅱ)若,對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市在進(jìn)行創(chuàng)建文明城市的活動(dòng)中,為了解居民對(duì)“創(chuàng)文”的滿意程度,組織居民給活動(dòng)打分(分?jǐn)?shù)為整數(shù).滿分為100分).從中隨機(jī)抽取一個(gè)容量為120的樣本.發(fā)現(xiàn)所有數(shù)據(jù)均在內(nèi).現(xiàn)將這些分?jǐn)?shù)分成以下6組并畫出了樣本的頻率分布直方圖,但不小心污損了部分圖形,如圖所示.觀察圖形,回答下列問(wèn)題:
(1)算出第三組的頻數(shù).并補(bǔ)全頻率分布直方圖;
(2)請(qǐng)根據(jù)頻率分布直方圖,估計(jì)樣本的眾數(shù)、中位數(shù)和平均數(shù).(每組數(shù)據(jù)以區(qū)間的中點(diǎn)值為代表)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com