6.已知$sin({π-α})-cos({π+α})=\frac{{\sqrt{2}}}{3}({\frac{π}{2}<α<π})$,求下列各式的值:
(1)sinαcosα;
(2)sinα-cosα;
(3)${sin^3}({\frac{π}{2}-α})-{cos^3}({\frac{π}{2}+α})$.

分析 (1)利用誘導(dǎo)公式化簡(jiǎn)已知,兩邊平方后,結(jié)合sin2α+cos2α=1,即可得解.
(2)由$\frac{π}{2}<α<π$,可求sinα>0,cosα<0,進(jìn)而可求sinα-cosα>0,結(jié)合(1)結(jié)論即可計(jì)算得解.
(3)由誘導(dǎo)公式,立方差公式即可化簡(jiǎn)求值得解.

解答 (本題滿(mǎn)分14分)
解:(1)因?yàn)?sin({π-α})-cos({π+α})=sinα+cosα=\frac{{\sqrt{2}}}{3}$,…(2分)
兩邊平方可得:${sin^2}α+2sinα•cosα+{cos^2}α=\frac{2}{9}$.
又因?yàn)閟in2α+cos2α=1,
所以$sinα•cosα=-\frac{7}{18}$.…(6分)
(2)由于$\frac{π}{2}<α<π$,那么sinα>0,cosα<0,
故sinα-cosα>0,
所以$sinα-cosα=\sqrt{{{({sina-cosα})}^2}}=\sqrt{1-2sinα•cosα}=\frac{4}{3}$.…(10分)
(3)由誘導(dǎo)公式得:${sin^3}({\frac{π}{2}-α})-{cos^3}({\frac{π}{2}+α})={cos^3}α+{sin^3}α$
=(cosα+sinα)(cos2α-cosα•sinα+cos2α)=$\frac{{\sqrt{2}}}{3}×({1+\frac{7}{18}})=\frac{{25\sqrt{2}}}{54}$.…(14分)

點(diǎn)評(píng) 本題主要考查了誘導(dǎo)公式,同角三角函數(shù)基本關(guān)系式,立方差公式在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=ax-1(a>0,a≠1)的圖象經(jīng)過(guò)點(diǎn)(3,$\frac{1}{9}$).
(1)求a的值;
(2)求函數(shù)f(x)=a2x-ax-2+8,當(dāng)x∈[-2,1]時(shí)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn=4(a1+a3+…+a2n-1),a1a2a3=27,則a6=( 。
A.27B.81C.243D.729

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在三角形ABC中,AB=2,AC=4,P是三角形ABC的外心,數(shù)量積$\overrightarrow{AP}•\overrightarrow{BC}$等于6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知$sinx+cosy=\frac{1}{3}$,則cosy+sin2x-1的最大值為$\frac{4}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)函數(shù)$f(x)=\frac{|x|}{1+|x|}$,則使得f(x)>f(2x-1)成立的x的取值范圍是( 。
A.$(\frac{1}{3},1)$B.$(-∞,\frac{1}{3})∪(1,+∞)$C.$(-\frac{1}{3},\frac{1}{3})$D.$(-∞,-\frac{1}{3})∪(\frac{1}{3},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.一個(gè)玻璃瓶中裝有大小相等質(zhì)地均勻顏色各不相同的玻璃小球共3個(gè),現(xiàn)隨機(jī)的倒出小球(至少倒出一個(gè)),倒后重新將倒出小球裝回原瓶中,進(jìn)行下一次操作.現(xiàn)通過(guò)倒玻璃球走跳棋游戲,規(guī)則如下:棋盤(pán)上標(biāo)有第0站,第1站,第2站…一枚棋子開(kāi)始停在第0站,棋手將玻璃瓶中的小球倒出,若倒出的小球是奇數(shù)個(gè),將棋子向前走一步;若倒出的小球是偶數(shù)個(gè),則將棋子向前走兩步.然后將倒出的小球裝回原玻璃瓶,準(zhǔn)備下一次操作.設(shè)棋子跳到第n站(n∈N*)的概率為Pn,已知P0=1.
(1)求倒出的小球是奇數(shù)個(gè)的概率;
(2)求P1、P2;
(3)證明:數(shù)列$\{{P_n}-{P_{n-1}}\},n∈{N^*}$是等比數(shù)列,并求Pn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知f(x)的定義域?yàn)閇-3,3],則f(x2-1)的定義域?yàn)閇-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)的定義域?yàn)閇m,n],若存在k∈N*,使得函數(shù)f(x)的值域?yàn)閇km,kn],則稱(chēng)函數(shù)f(x)為“k-倍乘函數(shù)”.
(1)請(qǐng)判斷函數(shù)f(x)=2x,x∈[1,2]是否是“2-倍乘函數(shù)”;
(2)已知函數(shù)g(x)=x2,問(wèn)是否存在k∈N*,使g(x)在[2,4]上為“k-倍乘函數(shù)”;
(3)已知函數(shù)h(x)=-x2+4在區(qū)間[m,n]上為“2-倍乘函數(shù)”,求實(shí)數(shù)m,n的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案