類比平面幾何中的定理:△ABC中,若DE是△ABC的中位線,則有S△ADE:S△ABC=1:4;若三棱錐A-BCD有中截面EFG∥平面BCD,則截得三棱錐的體積與原三棱錐體積之間的關系式為________.

VA-EFG:VA-BCD=1:8
分析:這是一個類比推理的題,在由平面圖形到空間圖形的類比推理中,一般是由點的性質類比推理到線的性質,由線的性質類比推理到面的性質,由面積的性質類比推理到體積的性質,由已知“若DE是△ABC的中位線,則有S△ADE:S△ABC=1:4”我們可以類比這一性質,推理出若三棱錐A-BCD中,有中截面EFG∥平面BCD,則截得三棱錐的體積與原三棱錐體積之間的關系式.
解答:由:△ABC中,若DE是△ABC的中位線,則有S△ADE:S△ABC=1:4;
我們可以根據(jù)由面積的性質類比推理到體積的性質,類比這一性質,推理出:
若三棱錐A-BCD有中截面EFG∥平面BCD,則截得三棱錐的體積與原三棱錐體積之間的關系式為
VA-EFG:VA-BCD=1:8
故答案為:VA-EFG:VA-BCD=1:8.
點評:類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質去推測另一類事物的性質,得出一個明確的命題(猜想).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

15、類比平面幾何中的定理:△ABC中,若DE是△ABC的中位線,則有S△ADE:S△ABC=1:4;若三棱錐A-BCD有中截面EFG∥平面BCD,則截得三棱錐的體積與原三棱錐體積之間的關系式為
VA-EFG:VA-BCD=1:8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

類比平面幾何中的定理“設a,b,c是三條直線,若a⊥c,b⊥c,則a∥b”,得出如下結論:
①設a,b,c是空間的三條直線,若a⊥c,b⊥c,則a∥b;
②設a,b是兩條直線,α是平面,若a⊥α,b⊥α,則a∥b;
③設α,β是兩個平面,m是直線,若m⊥α,m⊥β,則α∥β;
④設α,β,γ是三個平面,若α⊥γ,β⊥γ,則α∥β;
其中正確命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年四川省成都高新區(qū)高三9月統(tǒng)一檢測理科數(shù)學試卷(解析版) 題型:選擇題

類比平面幾何中的定理 “設是三條直線,若,則”,得出如下結論:

①設是空間的三條直線,若,則;

②設是兩條直線,是平面,若,則;

③設是兩個平面,是直線,若;

④設是三個平面,若,則;

其中正確命題的個數(shù)是(     )  

A.          B.          C.           D. 

 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

類比平面幾何中的定理:△ABC中,若DE是△ABC的中位線,則有S△ADE:S△ABC=1:4;若三棱錐A-BCD有中截面EFG平面BCD,則截得三棱錐的體積與原三棱錐體積之間的關系式為______.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年福建省寧德市霞浦一中高二(下)第一次月考數(shù)學試卷(文科)(實驗班)(解析版) 題型:填空題

類比平面幾何中的定理:△ABC中,若DE是△ABC的中位線,則有S△ADE:S△ABC=1:4;若三棱錐A-BCD有中截面EFG∥平面BCD,則截得三棱錐的體積與原三棱錐體積之間的關系式為   

查看答案和解析>>

同步練習冊答案