【題目】已知函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的方程有實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.
【答案】(1)函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(2)當(dāng)時(shí),方程有實(shí)數(shù)根.
【解析】試題分析:(1)函數(shù)求導(dǎo),從而得單調(diào)區(qū)間;
(2)方程有實(shí)數(shù)根,即函數(shù)存在零點(diǎn),分類討論函數(shù)的單調(diào)性,從而得有零點(diǎn)時(shí)參數(shù)的范圍.
試題解析:
(1)依題意,得 ,.
令,即.
解得;
令,即.
解得.
故函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.
(2)由題得, .
依題意,方程有實(shí)數(shù)根,
即函數(shù)存在零點(diǎn).
又.
令,得.
當(dāng)時(shí),.
即函數(shù)在區(qū)間上單調(diào)遞減,
而, .
所以函數(shù)存在零點(diǎn);
當(dāng)時(shí),,隨的變化情況如下表:
所以為函數(shù)的極小值,也是最小值.
當(dāng),即時(shí),函數(shù)沒(méi)有零點(diǎn);
當(dāng),即時(shí),注意到,
,
所以函數(shù)存在零點(diǎn).
綜上所述,當(dāng)時(shí),方程有實(shí)數(shù)根.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱的所有棱長(zhǎng)均為2,底面側(cè)面, , 為的中點(diǎn), .
(1)證明: .
(2)若是棱上一點(diǎn),滿足,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,已知BC邊上的高所在直線的方程為x﹣2y+1=0,∠A平分線所在直線的方程為y=0,若點(diǎn)B的坐標(biāo)為(1,2), (Ⅰ)求直線BC的方程;
(Ⅱ)求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)=ax2﹣(a+1)x+1
(1)解關(guān)于x的不等式f(x)>0;
(2)若對(duì)任意的a∈[﹣1,1],不等式f(x)>0恒成立,求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》中有這樣一則問(wèn)題:“今有良馬與弩馬發(fā)長(zhǎng)安,至齊,齊去長(zhǎng)安三千里,良馬初日行一百九十三里,日增一十三里;弩馬初日行九十七里,日減半里,良馬先至齊,復(fù)還迎弩馬.”則現(xiàn)有如下說(shuō)法:
①弩馬第九日走了九十三里路;
②良馬前五日共走了一千零九十五里路;
③良馬和弩馬相遇時(shí),良馬走了二十一日.
則以上說(shuō)法錯(cuò)誤的個(gè)數(shù)是( )個(gè)
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= .
(1)求f(x)+f(1﹣x)的值;
(2)若數(shù)列{an}滿足an=f(0)+f( )+f( )+…+f( )+f(1)(n∈N*),求數(shù)列{an}的通項(xiàng)公式;
(3)若數(shù)列{bn}滿足bn=2nan , Sn是數(shù)列{bn}的前n項(xiàng)和,是否存在正實(shí)數(shù)k,使不等式knSn>3bn對(duì)于一切的n∈N*恒成立?若存在,請(qǐng)求出k的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知c=acosB+bsinA.
(1)求A;
(2)若a=2,b=c,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中, 底面,底面是直角梯形, , , , 是的中點(diǎn).
(1)求證:平面平面;
(2)若二面角的余弦值為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋子A和B中裝有若干個(gè)均勻的紅球和白球,從A中摸出一個(gè)紅球的概率是 ,從B中摸出一個(gè)紅球的概率為p.
(1)從A中又放回的摸球,每次摸出一個(gè),共摸5次 ①恰好有3次摸到紅球的概率;
②第一次、第三次、第五次摸到紅球的概率.
(2)若A、B兩個(gè)袋子中的球之比為12,將A、B中的球裝在一起后,從中摸出一個(gè)紅球的概率是 ,求p的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com