【題目】已知橢圓的焦點(diǎn)在x軸上,一個(gè)頂點(diǎn)為,離心率為,過橢圓的右焦點(diǎn)F的直線l與坐標(biāo)軸不垂直,且交橢圓于AB兩點(diǎn).

求橢圓的方程;

設(shè)點(diǎn)C是點(diǎn)A關(guān)于x軸的對稱點(diǎn),在x軸上是否存在一個(gè)定點(diǎn)N,使得C,BN三點(diǎn)共線?若存在,求出定點(diǎn)的坐標(biāo);若不存在,說明理由;

設(shè),是線段為坐標(biāo)原點(diǎn)上的一個(gè)動(dòng)點(diǎn),且,求m的取值范圍.

【答案】(1);(2)定點(diǎn)(3)

【解析】

(1)根據(jù)橢圓的一個(gè)頂點(diǎn),即b=1,利用離心率求得a和c關(guān)系進(jìn)而求得a,則橢圓的方程可得;(2)設(shè)存在N(t,0),使得C、B、N三點(diǎn)共線,則,利用向量共線定理可得t,即可得出.(3)設(shè)直線l的方程為y=k(x﹣2)(k≠0),代入橢圓方程,利用韋達(dá)定理結(jié)合向量的數(shù)量積公式,即可求得m的取值范圍;

由橢圓的焦點(diǎn)在x軸上,設(shè)橢圓C的方程為,

橢圓C的一個(gè)頂點(diǎn)為,即

,解得:

所以橢圓C的標(biāo)準(zhǔn)方程為

由得,設(shè),

設(shè)直線l的方程為,代入橢圓方程,消去y可得

,

點(diǎn)C與點(diǎn)A關(guān)于x軸對稱,

假設(shè)存在,使得C、B、N三點(diǎn)共線,

,,

、B、N三點(diǎn)共線,

,

,

存在定點(diǎn),使得C、B、N三點(diǎn)共線.

,

,

,

,

解得:,

當(dāng)時(shí),符合題意

故m的范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,過其焦點(diǎn)的直線與拋物線相交于、兩點(diǎn),滿足.

1)求拋物線的方程;

2)已知點(diǎn)的坐標(biāo)為,記直線的斜率分別為,,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域,部分對應(yīng)值如表,的導(dǎo)函數(shù)的圖象如圖所示,下列關(guān)于函數(shù)的結(jié)論正確的是(

0

4

5

1

2

2

1

A.函數(shù)的極大值點(diǎn)有2個(gè)

B.函數(shù)上是減函數(shù)

C.時(shí),的最大值是2,那么的最大值為4

D.當(dāng)時(shí),函數(shù)4個(gè)零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C:過點(diǎn),且離心率為

(Ⅰ)求橢圓C的方程;

(Ⅱ)若過原點(diǎn)的直線與橢圓C交于P、Q兩點(diǎn),且在直線上存在點(diǎn)M,使得為等邊三角形,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù)).

1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),設(shè)的兩個(gè)極值點(diǎn),()恰為的零點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠有4臺大型機(jī)器,在一個(gè)月中,一臺機(jī)器至多出現(xiàn)1次故障,且每臺機(jī)器是否出現(xiàn)故障是相互獨(dú)立的,出現(xiàn)故障時(shí)需1名工人進(jìn)行維修,每臺機(jī)器出現(xiàn)故障需要維修的概率為

1)問該廠至少有多少名維修工人才能保證每臺機(jī)器在任何時(shí)刻同時(shí)出現(xiàn)故障時(shí)能及時(shí)進(jìn)行維修的概率不小于?

2)已知1名工人每月只有維修1臺機(jī)器的能力,每月需支付給每位工人1萬元的工資,每臺機(jī)器不出現(xiàn)故障或出現(xiàn)故障能及時(shí)維修,能使該廠產(chǎn)生5萬元的利潤,否則將不產(chǎn)生利潤.若該廠現(xiàn)有2名工人,求該廠每月獲利的均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性

(2)當(dāng)時(shí),,對任意,都有恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,是曲線段是參數(shù),)的左、右端點(diǎn),上異于,的動(dòng)點(diǎn),過點(diǎn)作直線的垂線,垂足為.

1)建立適當(dāng)?shù)臉O坐標(biāo)系,寫出點(diǎn)軌跡的極坐標(biāo)方程;

2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 為圓的直徑,點(diǎn), 在圓上, ,矩形和圓所在的平面互相垂直,已知

(Ⅰ)求證:平面平面;

(Ⅱ)求直線與平面所成角的大。

(Ⅲ)當(dāng)的長為何值時(shí),二面角的大小為

查看答案和解析>>

同步練習(xí)冊答案