求和:Sn=x+2x2+3x3+…+nxn
解:當(dāng)x=0時(shí),;
當(dāng)x=1時(shí),
當(dāng)x≠0且x≠1時(shí),, ①
,       ② 
①-②得,,
所以
綜上, 。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

利用導(dǎo)數(shù)求和:
(1)Sn=1+2x+3x2+…+nxn-1(x≠0,n∈N*);
(2)Sn=Cn1+2Cn2+3Cn3+…+nCnn(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:函數(shù)f(x)=
2x+3
3x
,數(shù)列{an}對(duì)n≥2,n∈N總有an=f(
1
an-1
),a1=1
;
(1)求{an}的通項(xiàng)公式.
(2)求和:Sn=a1a2-a2a3+a3a4-a4a5+…+(-1)n-1anan+1
(3)若數(shù)列{bn}滿足:①{bn}為{
1
an
}
的子數(shù)列(即{bn}中的每一項(xiàng)都是{
1
an
}
的項(xiàng),且按在{
1
an
}
中的順序排列)②{bn}為無(wú)窮等比數(shù)列,它的各項(xiàng)和為
1
2
.這樣的數(shù)列是否存在?若存在,求出所有符合條件的數(shù)列{bn},寫(xiě)出它的通項(xiàng)公式,并證明你的結(jié)論;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

利用導(dǎo)數(shù)求和

(1)Sn=1+2x+3x2+…+nxn1(x≠0,n∈N*)

(2)Sn=C+2C+3C+…+nC,(n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:函數(shù)f(x)=
2x+3
3x
,數(shù)列{an}對(duì)n≥2,n∈N總有an=f(
1
an-1
),a1=1
;
(1)求{an}的通項(xiàng)公式.
(2)求和:Sn=a1a2-a2a3+a3a4-a4a5+…+(-1)n-1anan+1
(3)若數(shù)列{bn}滿足:①{bn}為{
1
an
}
的子數(shù)列(即{bn}中的每一項(xiàng)都是{
1
an
}
的項(xiàng),且按在{
1
an
}
中的順序排列)②{bn}為無(wú)窮等比數(shù)列,它的各項(xiàng)和為
1
2
.這樣的數(shù)列是否存在?若存在,求出所有符合條件的數(shù)列{bn},寫(xiě)出它的通項(xiàng)公式,并證明你的結(jié)論;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2006年高考第一輪復(fù)習(xí)數(shù)學(xué):14.2 導(dǎo)數(shù)的概念與運(yùn)算(2)(解析版) 題型:解答題

利用導(dǎo)數(shù)求和:
(1)Sn=1+2x+3x2+…+nxn-1(x≠0,n∈N*);
(2)Sn=Cn1+2Cn2+3Cn3+…+nCnn(n∈N*).

查看答案和解析>>

同步練習(xí)冊(cè)答案