,且函數(shù)處有極值,則ab的最大值為   
9

試題分析:,∵f(x)在x=1處取極值,∴,即a+b=6,根據(jù)基本不等式,∴ab的最小值為9.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知曲線處的切線方程是.
(1)求的解析式;
(2)求曲線過點的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

記函數(shù)fn(x)=a·xn-1(a∈R,n∈N*)的導函數(shù)為f′n(x),已知f′3(2)=12.
(1)求a的值;
(2)設(shè)函數(shù)gn(x)=fn(x)-n2ln x,試問:是否存在正整數(shù)n使得函數(shù)gn(x)有且只有一個零點?若存在,請求出所有n的值;若不存在,請說明理由;
(3)若實數(shù)x0和m(m>0且m≠1)滿足,試比較x0與m的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(1)證明:;
(2)證明:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)曲線y=ax-ln(x+1)在點(0,0)處的切線方程為y=2x,則a= (   )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)函數(shù),,其中為實數(shù),若上是單調(diào)減函數(shù),且上有最小值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=x3+x-16.
(1)求曲線y=f(x)在點(2,-6)處的切線的方程;
(2)直線l為曲線y=f(x)的切線,且經(jīng)過原點,求直線l的方程及切點坐標;
(3)如果曲線y=f(x)的某一切線與直線y=-x+3垂直,求切點坐標與切線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè),若,則(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)的圖象上一點處的切線的斜率為(  )
A.-B.C.-D.-

查看答案和解析>>

同步練習冊答案