已知幾何體E—ABCD如圖所示,其中四邊形ABCD為矩形,為等邊三角形,且點F為棱BE上的動點。

(I)若DE//平面AFC,試確定點F的位置;
(II)在(I)條件下,求二面角E—DC—F的余弦值。

(Ⅰ)連接BD交AC于點,若∥平面,
,點為BD中點,則為棱的中點……4分
(Ⅱ),,,又
四邊形為矩形,          ……5分
法(一)中點為坐標原點,以軸,以軸,
軸,如圖建系
,設平面的法向量
,不妨令,則       ……8分
,設平面的法向量
不妨令       ……11分
設二面角,                    ……12分
法(二)
設二面角的平面角為,
中點O,中點,

,             ……8分
同理設二面角的平面角為,
                         ……11分
設二面角,     ……12分

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,底面是邊長為的菱形,,底面, ,的中點,的中點.

(Ⅰ)證明:直線平面;
(Ⅱ)求異面直線所成角的大;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖1, 在直角梯形中, ,,為線段的中點. 將沿折起,使平面平面,得到幾何體,如圖2所示.
(1)求證:平面;
(2)求二面角的余弦值.   

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題10分)如圖,已知平行四邊形ABCD和矩形ACEF所在的平面互相垂直,,

(1)求證:AC⊥BF;
(2)求點A到平面FBD的距離. 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在棱長為1正方體ABCD-A1B1C1D1中,M和N分別為A1B1和BB1的中點
(1)求直線AM和CN所成角的余弦值;
(2)若P為B1C1的中點,求直線CN與平面MNP所成角的余弦值;
(3)P為B1C1上一點,且,當 B1D⊥面PMN時,求的值.
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知是邊長為2的等邊三角形,平面,,上一動點.
(1)若的中點,求直線與平面所成的角的正弦值;
(2)在運動過程中,是否有可能使平面?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

四棱錐中,底面是邊長為2的正方形,,且,點滿足
(1)求證:平面;
(2)求二面角的余弦值;
(3)在線段上是否存在點使得平面?若存在,確定點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

過點與圓相交的所有直線中,被圓截得的弦最長的直線方程是(   )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分l2分)(注意:在試題卷上作答無效)

如圖,四棱錐中, ,,側(cè)面為等邊三角形..
(I)     證明:
(II)   求AB與平面SBC所成角的大小。

查看答案和解析>>

同步練習冊答案