已知幾何體E—ABCD如圖所示,其中四邊形ABCD為矩形,為等邊三角形,且點(diǎn)F為棱BE上的動(dòng)點(diǎn)。

(I)若DE//平面AFC,試確定點(diǎn)F的位置;
(II)在(I)條件下,求二面角E—DC—F的余弦值。

(Ⅰ)連接BD交AC于點(diǎn),若∥平面,
,點(diǎn)為BD中點(diǎn),則為棱的中點(diǎn)……4分
(Ⅱ),,,又
四邊形為矩形,          ……5分
法(一)中點(diǎn)為坐標(biāo)原點(diǎn),以軸,以軸,
軸,如圖建系
,設(shè)平面的法向量
,,不妨令,則       ……8分
,設(shè)平面的法向量
不妨令       ……11分
設(shè)二面角,                    ……12分
法(二)
設(shè)二面角的平面角為,
中點(diǎn)O,中點(diǎn),

,             ……8分
同理設(shè)二面角的平面角為,
                         ……11分
設(shè)二面角,,     ……12分

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐中,底面是邊長(zhǎng)為的菱形,,底面, ,的中點(diǎn),的中點(diǎn).

(Ⅰ)證明:直線平面;
(Ⅱ)求異面直線所成角的大;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1, 在直角梯形中, , ,為線段的中點(diǎn). 將沿折起,使平面平面,得到幾何體,如圖2所示.
(1)求證:平面
(2)求二面角的余弦值.   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題10分)如圖,已知平行四邊形ABCD和矩形ACEF所在的平面互相垂直,

(1)求證:AC⊥BF;
(2)求點(diǎn)A到平面FBD的距離. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在棱長(zhǎng)為1正方體ABCD-A1B1C1D1中,M和N分別為A1B1和BB1的中點(diǎn)
(1)求直線AM和CN所成角的余弦值;
(2)若P為B1C1的中點(diǎn),求直線CN與平面MNP所成角的余弦值;
(3)P為B1C1上一點(diǎn),且,當(dāng) B1D⊥面PMN時(shí),求的值.
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知是邊長(zhǎng)為2的等邊三角形,平面,,上一動(dòng)點(diǎn).
(1)若的中點(diǎn),求直線與平面所成的角的正弦值;
(2)在運(yùn)動(dòng)過(guò)程中,是否有可能使平面?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

四棱錐中,底面是邊長(zhǎng)為2的正方形,,且,點(diǎn)滿足
(1)求證:平面
(2)求二面角的余弦值;
(3)在線段上是否存在點(diǎn)使得平面?若存在,確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

過(guò)點(diǎn)與圓相交的所有直線中,被圓截得的弦最長(zhǎng)的直線方程是(   )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分l2分)(注意:在試題卷上作答無(wú)效)

如圖,四棱錐中, ,,側(cè)面為等邊三角形..
(I)     證明:
(II)   求AB與平面SBC所成角的大小。

查看答案和解析>>

同步練習(xí)冊(cè)答案