精英家教網 > 高中數學 > 題目詳情

【題目】某單位40歲以上的女性職工共有60人,為了調查一下體重和年齡的關系,將這60人隨機按1~60編號,用系統(tǒng)抽樣的方法從中抽取10人,測量一下體重.

(1)若被抽出的號碼其中一個為7,則最后被抽出的號碼是多少?

(2)被抽取的10個人的體重(單位:),用莖葉圖表示如圖,求這10人體重的中位數與平均數;

(3)從這10個人中體重超過的人中隨機抽取2人,參加健康指導培訓,求體重為的人被抽到的概率.

【答案】(1)

(2)中位數為,平均數為

(3)

【解析】

1)根據系統(tǒng)抽樣確定抽取的號碼間隔,再確定結果,

2)根據莖葉圖確定中位數,根據平均數公式求平均數,

3)先確定體重超過人數,再確定總事件數以及所求事件數,最后根據古典概型概率公式求結果.

解:(1)因為是系統(tǒng)抽樣,60人中抽取10個人,所以把60個號碼按順序分成10組,每6個號碼一組,每組抽取一個號碼,每個被抽取的號碼間隔為6,因為7號是第二組第一個號碼,所以最后一個號碼為第10組第一個號碼,即最后一個號碼為55.

(2)這10個人體重的中位數為71.5,

平均數為.

(3)10人中體重超過的有5人,從5個人中隨機抽取2個人,共有10種不同的取法:

,,,,,,,,.體重為的人被抽到的情況有,,.

故所求概率為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖所示,在四棱錐PABCD中,側面PAD垂直底面ABCD,∠PAD=∠ABC,設

1)求證:AE垂直BC;

2)若直線AB∥平面PCD,且DC2AB,求證:直線PD∥平面ACE

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知三棱錐M-ABC中,MA=MB=MC=AC=,AB=BC=2OAC的中點,點N在邊BC上,且.

1)證明:BO平面AMC;

2)求二面角N-AM-C的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數的圖像大致是(

A.B.

C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某省從2021年開始將全面推行新高考制度,新高考“”中的“2”要求考生從政治、化學、生物、地理四門中選兩科,按照等級賦分計入高考成績,等級賦分規(guī)則如下:從2021年夏季高考開始,高考政治、化學、生物、地理四門等級考試科目的考生原始成績從高到低劃分為五個等級,確定各等級人數所占比例分別為,,,,等級考試科目成績計入考生總成績時,將等級內的考生原始成績,依照等比例轉換法分別轉換到、、、五個分數區(qū)間,得到考生的等級分,等級轉換分滿分為100分.具體轉換分數區(qū)間如下表:

等級

比例

賦分區(qū)間

而等比例轉換法是通過公式計算:

其中,分別表示原始分區(qū)間的最低分和最高分,、分別表示等級分區(qū)間的最低分和最高分,表示原始分,表示轉換分,當原始分為,時,等級分分別為、

假設小南的化學考試成績信息如下表:

考生科目

考試成績

成績等級

原始分區(qū)間

等級分區(qū)間

化學

75分

等級

設小南轉換后的等級成績?yōu)?/span>,根據公式得:,

所以(四舍五入取整),小南最終化學成績?yōu)?7分.

已知某年級學生有100人選了化學,以半期考試成績?yōu)樵汲煽冝D換本年級的化學等級成績,其中化學成績獲得等級的學生原始成績統(tǒng)計如下表:

成績

95

93

91

90

88

87

85

人數

1

2

3

2

3

2

2

(1)從化學成績獲得等級的學生中任取2名,求恰好有1名同學的等級成績不小于96分的概率;

(2)從化學成績獲得等級的學生中任取5名,設5名學生中等級成績不小于96分人數為,求的分布列和期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數(其中是常數).

(Ⅰ)求過點與曲線相切的直線方程;

(Ⅱ)是否存在的實數,使得只有唯一的正數,當時不等式恒成立,若這樣的實數存在,試求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】201910月,德國爆發(fā)出芳香烴門事件,即一家權威的檢測機構在德國銷售的奶粉中隨機抽檢了16款(德國4款,法國8款、荷蘭4款),其中8款檢測出芳香烴礦物油成分,此成分會嚴重危害嬰幼兒的成長,有些奶粉已經遠銷至中國,地區(qū)聞訊后,立即組織相關檢測員對這8款品牌的奶粉進行抽檢,已知該地區(qū)一嬰幼兒用品商店在售某品牌的奶粉共6袋,這6袋奶粉中有4袋含有芳香礦物油成分,則隨機抽取3袋恰有2袋含有芳香經礦物油成分的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的長軸長為4,直線被橢圓截得的線段長為.

(1)求橢圓的標準方程;

(2)過橢圓的右頂點作互相垂直的兩條直線分別交橢圓兩點(點不同于橢圓的右頂點),證明:直線過定點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左焦點,直線y軸交于點P.且與橢圓交于AB兩點.A為橢圓的右頂點,Bx軸上的射影恰為。

1)求橢圓E的方程;

2M為橢圓E在第一象限部分上一點,直線MP與橢圓交于另一點N,若,求的取值范圍.

查看答案和解析>>

同步練習冊答案