已知橢圓的離心率為,右焦點(diǎn)為,且橢圓上的點(diǎn)到點(diǎn)距離的最小值為2.

⑴求橢圓的方程;

⑵設(shè)橢圓的左、右頂點(diǎn)分別為,過(guò)點(diǎn)的直線與橢圓及直線分別相交于點(diǎn)

(ⅰ)當(dāng)過(guò)三點(diǎn)的圓半徑最小時(shí),求這個(gè)圓的方程;

(ⅱ)若,求的面積.

 

【答案】

(1)

(2),12

【解析】

試題分析:⑴由已知,,且,所以,,所以,

所以橢圓的方程為.                     3分

⑵(。┯散,,,設(shè)

設(shè)圓的方程為,將點(diǎn)的坐標(biāo)代入,得

解得                 6分

所以圓的方程為,

,

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013071112002200611313/SYS201307111200581805556849_DA.files/image018.png">,當(dāng)且僅當(dāng)時(shí),圓的半徑最小,

故所求圓的方程為.               9分

(ⅱ)由對(duì)稱(chēng)性不妨設(shè)直線的方程為

,                11分

所以,

所以,

化簡(jiǎn),得,                      14分

解得,或,即,或,

此時(shí)總有,所以的面積為.          16分

考點(diǎn):直線與橢圓的位置關(guān)系

點(diǎn)評(píng):主要是考查了直線與橢圓的位置關(guān)系的運(yùn)用,屬于中檔題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知橢圓E的離心率為e,兩焦點(diǎn)為F1,F(xiàn)2,拋物線C以F1為頂點(diǎn),F(xiàn)2為焦點(diǎn),P為兩曲線的一個(gè)公共點(diǎn),若
|PF1|
|PF2|
=e,則e的值為(  )
A、
3
3
B、
3
2
C、
2
2
D、
6
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xOy中,橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左焦點(diǎn)為F,右頂點(diǎn)為A,動(dòng)點(diǎn)M為右準(zhǔn)線上一點(diǎn)(異于右準(zhǔn)線與x軸的交點(diǎn)),設(shè)線段FM交橢圓C于點(diǎn)P,已知橢圓C的離心率為
2
3
,點(diǎn)M的橫坐標(biāo)為
9
2

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)直線PA的斜率為k1,直線MA的斜率為k2,求k1•k2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓E的離心率為e,兩焦點(diǎn)為F1、F2,拋物線C以F1為頂點(diǎn),F(xiàn)2為焦點(diǎn),P為兩曲線的一個(gè)交點(diǎn),若
|PF1|
|PF2|
=e,則e的值為
3
3
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的離心率為e=
6
3
,一條準(zhǔn)線方程為x=
3
2
2

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)動(dòng)點(diǎn)P滿(mǎn)足:
OP
=
OM
+
ON
,其中M,N是橢圓上的點(diǎn),直線OM與ON的斜率之積為-
1
3
,問(wèn):是否存在兩個(gè)定點(diǎn)A,B,使得|PA|+|PB|為定值?若存在,求A,B的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(A題) (奧賽班做)已知橢圓E的離心率為e,左右焦點(diǎn)分別為F1、F2,拋物線C以F1頂點(diǎn),F(xiàn)2為焦點(diǎn),P為兩曲線的一個(gè)交點(diǎn),
|PF1|
|PF2|
=e
,則e的值為
3
3
3
3

查看答案和解析>>

同步練習(xí)冊(cè)答案