已知y=f(x)滿足f(n-1)=f(n)-lg an-1(n≥2,n∈N)且f(1)=-lg a,是否存在實(shí)數(shù)α,β,使f(n)=(αn2+βn-1)·lg a對(duì)任何n∈N*都成立,證明你的結(jié)論
∵f(n)=f(n-1)+lg an-1,
令n=2,則f(2)=f(1)+lg a=-lg a+lg a=0.
又f(1)=-lg a,
∴,∴.
∴f(n)=lg a.
現(xiàn)證明如下:(1)當(dāng)n=1時(shí),顯然成立.
(2)假設(shè)n=k(k∈N*,且k≥1)時(shí)成立,
即f(k)=lg a,
則n=k+1時(shí),
f(k+1)=f(k)+lg ak=f(k)+klg a
=lg a
=lg a.
則當(dāng)n=k+1時(shí),等式成立.
綜合(1)(2)可知,存在實(shí)數(shù)α、β且α=,β=-,使
f(n)=(αn2+βn-1)lg a對(duì)任意n∈N+都成立
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)已知函數(shù)
(1)求函數(shù)的定義域;
(2)求函數(shù)的零點(diǎn);
(3)若函數(shù)的最小值為-4,求a的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
若函數(shù)f(x)對(duì)定義域中任意x均滿足f(x)+f(2a-x)=2b,則稱函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(a,b)對(duì)稱.
(1)已知函數(shù)f(x)=的圖象關(guān)于點(diǎn)(0,1)對(duì)稱,求實(shí)數(shù)m的值;
(2)已知函數(shù)g(x)在(-∞,0)∪(0,+∞)上的圖象關(guān)于點(diǎn)(0,1)對(duì)稱,且當(dāng)x∈(0,+∞)時(shí),g(x)=x2+ax+1,求函數(shù)g(x)在(-∞,0)上的解析式;
(3)在(1)(2)的條件下,當(dāng)t>0時(shí),若對(duì)任意實(shí)數(shù)x∈(-∞,0),恒有g(shù)(x)<f(t)成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知二次函數(shù)f(x)=ax2+bx+c,(a<0)不等式f(x)>-2x的解集為(1,3).
(1)若方程f(x)+6a=0有兩個(gè)相等的實(shí)根,求f(x)的解析式;
(2)若f(x)的最大值為正數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
定義:已知函數(shù)在[m,n](m<n)上的最小值為t,若t≤m恒成立,則稱函數(shù)在[m,n] (m<n)上具有“DK”性質(zhì).
(1)判斷函數(shù)在[1,2]上是否具有“DK”性質(zhì),說(shuō)明理由;
(2)若在[a,a+1]上具有“DK”性質(zhì),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
(Ⅰ)若函數(shù)在處取得極小值是,求的值;
(Ⅱ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅲ)若函數(shù)在上有且只有一個(gè)極值點(diǎn), 求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
函數(shù)的定義域?yàn)?0,1](為實(shí)數(shù)).
⑴當(dāng)時(shí),求函數(shù)的值域;
⑵若函數(shù)在定義域上是減函數(shù),求的取值范圍;
⑶求函數(shù)在x∈(0,1]上的最大值及最小值,并求出函數(shù)取最值時(shí)的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分16分)
設(shè)R,m,n都是不為1的正數(shù),函數(shù)
(1)若m,n滿足,請(qǐng)判斷函數(shù)是否具有奇偶性. 如果具有,求出相
應(yīng)的t的值;如果不具有,請(qǐng)說(shuō)明理由;
(2)若,且,請(qǐng)判斷函數(shù)的圖象是否具有對(duì)稱性. 如果具
有,請(qǐng)求出對(duì)稱軸方程或?qū)ΨQ中心坐標(biāo);若不具有,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)在閉區(qū)間上的最大值記為
(1)請(qǐng)寫出的表達(dá)式并畫出的草圖;
(2)若, 恒成立,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com