17.已知定義在R上的函數(shù)y=f(x)滿足:函數(shù)y=f(x-1)的圖象關(guān)于直線x=1對(duì)稱(chēng),且當(dāng)x∈(-∞,0),f(x)+xf′(x)<0成立(f′(x)是函數(shù)f(x)的導(dǎo)函數(shù)),若a=(sin$\frac{1}{2}$)f(sin$\frac{1}{2}$),b=(ln2)f(ln2),c=2f(log${\;}_{\frac{1}{2}}$$\frac{1}{4}$),則a,b,c的大小關(guān)系是( 。
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

分析 由導(dǎo)數(shù)性質(zhì)推導(dǎo)出當(dāng)x∈(-∞,0)或x∈(0,+∞)時(shí),函數(shù)y=xf(x)單調(diào)遞減.由此能求出結(jié)果.

解答 解∵函數(shù)y=f(x-1)的圖象關(guān)于直線x=1對(duì)稱(chēng),
∴y=f(x)關(guān)于y軸對(duì)稱(chēng),
∴函數(shù)y=xf(x)為奇函數(shù).
∵[xf(x)]'=f(x)+xf'(x),
∴當(dāng)x∈(-∞,0)時(shí),[xf(x)]'=f(x)+xf'(x)<0,函數(shù)y=xf(x)單調(diào)遞減,
當(dāng)x∈(0,+∞)時(shí),函數(shù)y=xf(x)單調(diào)遞減.
∵$0<sin\frac{1}{2}<\frac{1}{2}$,
$1>ln2>ln\sqrt{e}=\frac{1}{2}$,
${log_{\frac{1}{2}}}\frac{1}{4}=2$$0<sin\frac{1}{2}<ln2<{log_{\frac{1}{2}}}\frac{1}{4}$,
∴a>b>c,
故選:A.

點(diǎn)評(píng) 本題考查三個(gè)數(shù)的大小的比較,解題時(shí)要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)、函數(shù)性質(zhì)的合理運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上存在一點(diǎn)P,使得∠F1PF2=120°,其中F1,F(xiàn)2是橢圓的兩焦點(diǎn),則橢圓離心率e的取值范圍是[$\frac{\sqrt{3}}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.下列命題中錯(cuò)誤的是( 。
A.若命題p為真命題,命題q為假命題,則命題“p∨(¬q)”為真命題
B.命題“若a+b≠7,則a≠2或b≠5”為真命題
C.命題“若x2-x=0,則x=0或x=1”的否命題為“若x2-x=0,則x≠0且x≠1”
D.命題p:?x>0,sinx>2x-1,則¬p為?x>0,sinx≤2x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.“m>0,n>0”是“方程mx2+ny2=1”表示橢圓的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.即不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.設(shè)A={x|x-1>0},B={x|x<a},若A∩B≠∅,則實(shí)數(shù)a的取值范圍是(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖為一簡(jiǎn)單組合體,其底面ABCD為正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2,N為線段PB的中點(diǎn).
(Ⅰ)證明:NE⊥PD;
(Ⅱ)求三棱錐E-PBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.把集合{a,b}的所有子集列舉出來(lái).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.從學(xué)號(hào)為1至50的高一某班50名學(xué)生中隨機(jī)選取5名同學(xué)參加數(shù)學(xué)測(cè)試,采用系統(tǒng)抽樣的方法,則所選5名學(xué)生的學(xué)號(hào)可能是( 。
A.1,2,3,4,5B.4,14,24,34,44C.2,4,6,8,10D.4,13,22,31,40

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若$\overrightarrow{a}$與$\overrightarrow$-$\overrightarrow{c}$都是非零向量,則“$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow{a}$•$\overrightarrow{c}$”是“$\overrightarrow{a}$⊥($\overrightarrow$-$\overrightarrow{c}$)”的(  )
A.充分但非必要條件B.必要但非充分條件
C.充要條件D.既非充分也非必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案