如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,線段B1D1上有兩個(gè)動(dòng)點(diǎn)E、F,且EF=.現(xiàn)有如下四個(gè)結(jié)論:
①AC⊥BE;
②EF∥平面ABCD;
③三棱錐A-BEF的體積為定值;
④異面直線AE、BF所成的角為定值,
其中正確結(jié)論的序號(hào)是   
【答案】分析:①AC⊥BE,可由線面垂直證兩線垂直;
②EF∥平面ABCD,可由線面平行的定義請(qǐng)線面平行;
③三棱錐A-BEF的體積為定值,可證明棱錐的高與底面積都是定值得出體積為定值;
④異面直線AE、BF所成的角為定值,可由兩個(gè)極好位置說(shuō)明兩異面直線所成的角不是定值.
解答:解:①AC⊥BE,由題意及圖形知,AC⊥面DD1B1B,故可得出AC⊥BE,此命題正確;
②EF∥平面ABCD,由正方體ABCD-A1B1C1D1的兩個(gè)底面平行,EF在其一面上,故EF與平面ABCD無(wú)公共點(diǎn),故有EF∥平面ABCD,此命題正確;
③三棱錐A-BEF的體積為定值,由幾何體的性質(zhì)及圖形知,三角形BEF的面積是定值,A點(diǎn)到面DD1B1B距離是定值,故可得三棱錐A-BEF的體積為定值,此命題正確;
④異面直線AE、BF所成的角為定值,由圖知,當(dāng)F與B1重合時(shí),令上底面頂點(diǎn)為O,則此時(shí)兩異面直線所成的角是∠A1AO,當(dāng)E與D1重合時(shí),此時(shí)點(diǎn)F與O重合,則兩異面直線所成的角是OBC1,此二角不相等,故異面直線AE、BF所成的角不為定值.
綜上知①②③正確
故答案為①②③
點(diǎn)評(píng):本題考查棱柱的結(jié)構(gòu)特征,解答本題關(guān)鍵是正確理解正方體的幾何性質(zhì),且能根據(jù)這些幾何特征,對(duì)其中的點(diǎn)線面和位置關(guān)系作出正確判斷.熟練掌握線面平行的判斷方法,異面直線所成角的定義以及線面垂直的證明是解答本題的知識(shí)保證.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為a,它的各個(gè)頂點(diǎn)都在球O的球面上,問(wèn)球O的表面積.
(1) 如果球O和這個(gè)正方體的六個(gè)面都相切,則有S=
 

(2)如果球O和這個(gè)正方體的各條棱都相切,則有S=
 

精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為BB1和A1D1的中點(diǎn).證明:向量
A1B
B1C
、
EF
是共面向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方體ABCD-A1B1C1D1棱長(zhǎng)為8,E、F分別為AD1,CD1中點(diǎn),G、H分別為棱DA,DC上動(dòng)點(diǎn),且EH⊥FG.
(1)求GH長(zhǎng)的取值范圍;
(2)當(dāng)GH取得最小值時(shí),求證:EH與FG共面;并求出此時(shí)EH與FG的交點(diǎn)P到直線B1B的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方體ABCD-A1B1C1D1中,若E、F、G分別為棱BC、C1C、B1C1的中點(diǎn),O1、O2分別為四邊形ADD1A1、A1B1C1D1的中心,則下列各組中的四個(gè)點(diǎn)不在同一個(gè)平面上的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方體ABCD-A1B1C1D1中,E、F、G、H分別是所在棱的三等分點(diǎn),且BF=DE=C1G=C1H=
13
AB

(1)證明:直線EH與FG共面;
(2)若正方體的棱長(zhǎng)為3,求幾何體GHC1-EFC的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案