1.設函數(shù)f(x)=$\left\{\begin{array}{l}{3x-\frac{1}{2},x<1}\\{{2}^{x},x≥1}\end{array}\right.$,則f(f($\frac{5}{6}$))=( 。
A.1B.2C.3D.4

分析 直接利用分段函數(shù)的解析式求解函數(shù)值即可.

解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{3x-\frac{1}{2},x<1}\\{{2}^{x},x≥1}\end{array}\right.$,
則f(f($\frac{5}{6}$))=f(3×$\frac{5}{6}$-$\frac{1}{2}$)=f(2)=22=4.
故選:D.

點評 本題考查分段函數(shù)的應用,函數(shù)值的求法,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.設函數(shù)f(x)=|x-a|+|x-5|.
(1)當a=1時,求f(x)的最小值;
(2)如果對任意的實數(shù)x,都有f(x)≥1成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.當m≠-1時,下列關于方程組$\left\{\begin{array}{l}mx+y=m+1\\ x+my=2m\end{array}\right.$的判斷,正確的是( 。
A.方程組有唯一解B.方程組有唯一解或有無窮多解
C.方程組無解或有無窮多解D.方程組有唯一解或無解

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知集合A=[2,log2t],集合B={x|y=$\sqrt{(x-2)(5-x)}$},
(1)對于區(qū)間[a,b],定義此區(qū)間的“長度”為b-a,若A的區(qū)間“長度”為3,試求實數(shù)t的值.
(2)若A?B,試求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知等差數(shù)列{an}首項是1公差不為0,Sn為的前n和,且S22=S1•S4
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.曲線f(x)=sinx+ex+2在點(0,f(0))處的切線方程為y=2x+3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設a,b,c為三條互不相同的直線,α,β,γ為是三個互不相同的平面,則下列選項中正確的是( 。
A.若a⊥b,a⊥c,則b∥cB.若a⊥α,b⊥β,a∥b,則α∥β
C.若α⊥β,α⊥γ,則β∥γD.若a∥α,b∥β,a⊥b,則α⊥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.某市居民用水收費標準如下:每戶每月用水不超過15噸時,每噸2元,當用水超過15噸時,超過部分每噸3元.某月甲、乙兩戶共交水費y元,已知甲、乙兩用戶該月用水量分別為5x,3x(噸).
(1)求y關于x的函數(shù)表達式;
(2)若甲、乙兩戶該月共交水費114元,分別求出甲、乙兩戶該月的用水量和所交水費.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.執(zhí)行如圖所示的偽代碼,輸出i的值為11.

查看答案和解析>>

同步練習冊答案