(08年龍巖一中沖刺理)(12分)

已知雙曲線的兩個(gè)焦點(diǎn)為,,為動(dòng)點(diǎn),若,為定值(其中>1),的最小值為.

(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;

(Ⅱ)設(shè)點(diǎn),過點(diǎn)作直線交軌跡兩點(diǎn),判斷的大小是否為定值?并證明你的結(jié)論.

解析:(Ⅰ)依題意點(diǎn)的軌跡為以雙曲線的兩個(gè)焦點(diǎn)為焦點(diǎn),且長(zhǎng)軸為的橢圓。設(shè)橢圓方程為)            ………………1分

由雙曲線方程,得雙曲線兩個(gè)焦點(diǎn)為(-1,0),(1,0),設(shè),,,

由余弦定理得………3分

,當(dāng)時(shí)取“=”,即

∴  ,得    ∴ 

∴  動(dòng)點(diǎn)軌跡方程為                         ………………6分

(Ⅱ)當(dāng)軸時(shí),直線的方程為,代入解得、的坐標(biāo)分別為、   而,∴

猜測(cè)為定值。                            ………………………7分

證明:設(shè)直線的方程為,

 ,得

 ,             ………………9分

         

         

         

         

為定值.                          ………………………12分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年龍巖一中沖刺文)(本題滿分14分)已知函數(shù)(其中),,

(1)求的取值范圍;

(2)方程有幾個(gè)實(shí)根?為什么?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年龍巖一中沖刺文)(12分)

如圖,梯形中,,的中點(diǎn),將沿折起,使點(diǎn)折到點(diǎn)的位置,且二面角的大小為

(1)求證:

(2)求直線與平面所成角的大小

(3)求點(diǎn)到平面的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年龍巖一中沖刺理)(14分)

在直角坐標(biāo)平面xoy上的一列點(diǎn)簡(jiǎn)記為,若由構(gòu)成的數(shù)列滿足其中是y軸正方向相同的單位向量,則為T點(diǎn)列.

(1)判斷是否為T點(diǎn)列,并說明理由;

(2)若為T點(diǎn)列,且點(diǎn)的右上方,任取其中連續(xù)三點(diǎn),判定的形狀(銳角三角形、直角三角形、鈍角三角形),并予以證明;

(3)若為T點(diǎn)列,正整數(shù)滿足.求證:

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年龍巖一中沖刺文)(12分)

已知O為坐標(biāo)原點(diǎn),,

(1)若,求的單調(diào)遞增區(qū)間;

(2)若的定義域?yàn)?IMG height=41 src='http://thumb.zyjl.cn/pic1/img/20090421/20090421173335006.gif' width=45>,值域?yàn)閇2,5],求a,b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案