平面四邊形ABCD中,則四邊形ABCD是

A.矩形             B.正方形           C.菱形             D.梯形

 

【答案】

C

【解析】

試題分析:根據(jù)題意,由于平面四邊形ABCD中說(shuō)明是平行四邊形,說(shuō)明對(duì)角線(xiàn)垂直,那么可知該四邊形為菱形,故選C.

考點(diǎn):向量的數(shù)量積

點(diǎn)評(píng):主要是考查了斜率的加減法以及數(shù)量積的幾何運(yùn)算,屬于基礎(chǔ)題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,平面四邊形ABCD中,AB=13,三角形ABC的面積為S△ABC=25,cos∠DAC=
3
5
AB
AC
=120
,
求:(1)AC的長(zhǎng);(2)cos∠BAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖 I,平面四邊形ABCD中,∠A=60°,∠ABC=150°,AB=AD=2BC=4,把△ABD沿直線(xiàn)BD折起,使得平面ABD⊥平面BCD,連接AC得到如圖 II所示四面體A-BCD.設(shè)點(diǎn)O,E,F(xiàn)分別是BD,AB,AC的中點(diǎn).連接CE,BF交于點(diǎn)G,連接OG.
(1)證明:OG⊥AC;
(2)求二面角B-AD-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面四邊形ABCD中,若AB=2,CD=1,則(
AC
+
DB
)•(
AB
+
CD
)
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面四邊形ABCD中,AB=BC=CD=a,∠ABC=90°,∠BCD=135°,沿對(duì)角線(xiàn)AC將此四邊形折成直二面角.
(1)求證:AB⊥平面BCD
(2)求三棱錐D-ABC的體積
(3)求點(diǎn)C到平面ABD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖甲,在平面四邊形ABCD中,已知∠A=45°,∠C=90°,AB=BD=2CD,現(xiàn)將四邊形ABCD沿BD折起,使平面ABD⊥平面BDC(如圖乙),設(shè)點(diǎn)E為棱AD的中點(diǎn).
(1)求證:DC⊥平面ABC;
(2)求BE與平面ABC所成角的正弦值大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案