9.函數(shù)y=2sin($\frac{π}{6}$-2x),x∈[0,π]的增區(qū)間是( 。
A.[0,$\frac{π}{3}$]B.[$\frac{π}{3}$,$\frac{5π}{6}$]C.[$\frac{5π}{6}$,π]D.[0,$\frac{π}{3}$]和[$\frac{5π}{6}$,π]

分析 在三角函數(shù)式中先把x的系數(shù)用誘導(dǎo)公式變?yōu)檎,表現(xiàn)出來是負(fù)號提前,這樣要求函數(shù)的增區(qū)間變成了去掉負(fù)號后的函數(shù)的減區(qū)間,據(jù)正弦函數(shù)的減區(qū)間求出結(jié)果,寫出在規(guī)定的范圍的區(qū)間.

解答 解:∵y=2sin($\frac{π}{6}$-2x)=-2sin(2x-$\frac{π}{6}$),
∴只要求y=2sin(2x-$\frac{π}{6}$)的減區(qū)間,
∵y=sinx的減區(qū)間為[2kπ+$\frac{π}{2}$,2kπ+$\frac{3π}{2}$],
∴2x-$\frac{π}{6}$∈[2kπ+$\frac{π}{2}$,2kπ+$\frac{3π}{2}$],
∴x$∈[kπ+\frac{π}{3},kπ+\frac{5π}{6}]$,
∵x∈[0,π],
∴x$∈[\frac{π}{3},\frac{5π}{6}]$,
故選B.

點評 在三角函數(shù)單調(diào)性運算時,若括號中給出的角自變量的系數(shù)為負(fù),一定要先用誘導(dǎo)公式把負(fù)號變正,否則,計算出的單調(diào)區(qū)間剛好相反,原因是復(fù)合函數(shù)單調(diào)性引起的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=4sinxcos(x+$\frac{π}{6}$),x∈R.
(Ⅰ)求函數(shù)f(x)的單調(diào)減區(qū)間;
(Ⅱ)求函數(shù)f(x)在$[{0,\frac{π}{2}}]$上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=loga(2+x),g(x)=loga(2-x),a>0且a≠1,設(shè)函數(shù)h(x)=f(x)+g(x).
(1)當(dāng)a=2時,求h(x)的定義域和值域;
(2)當(dāng)f(x)>g(x)時,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.sin$\frac{14π}{3}$的值是(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(X)在R上的圖象是連續(xù)的,若a<b<c,且f(a)•f(b)<0,f(b)•f(c)<0,則函數(shù)f(x)在(a,c)內(nèi)的零點個數(shù)是( 。
A.2個B.不小于2的奇數(shù)個C.不小于2的偶數(shù)個D.至少2個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列函數(shù)與y=x有相同圖象的一個函數(shù)是( 。
A.y=$\sqrt{{x}^{2}}$B.y=logaax(a>0且a≠1)
C.y=a${\;}^{lo{g}_{a}{a}^{x}}$(a>0且a≠1)D.y=$\frac{{x}^{2}}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=$\sqrt{4-x}$+(x-2)0的定義域為( 。
A.{x|x≤4}B.{x|x≤4,且x≠2}C.{x|1≤x≤4,且x≠2}D.{x|x≥4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.求過點M(1,1),且圓心與已知圓C:x2+y2+2x+4y-11=0相同的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{-x,x≤0}\\{{x}^{2},x>0}\end{array}\right.$.若f(a)=4,則實數(shù)a=(  )
A.-4 或-2B.-4 或 2C.-2 或 4D.-2 或 2

查看答案和解析>>

同步練習(xí)冊答案