已知圓x2+y2=r2在曲線|x|+|y|=4的內(nèi)部,則半徑r的范圍是(  )
A、0<r<2
B、0<r<
2
C、0<r<2
2
D、0<r<4
考點:點與圓的位置關(guān)系
專題:直線與圓
分析:作出曲線|x|+|y|=4對應(yīng)的圖象,利用圓心到直線的距離d與半徑之間的關(guān)系進行判斷即可.
解答: 解:作出曲線|x|+|y|=4對應(yīng)的圖象如圖:
但x>0,y>0時,曲線對應(yīng)的方程為x+y-4=0,
若圓x2+y2=r2在曲線|x|+|y|=4的內(nèi)部,
則圓心到直線的距離d=
|4|
2
>r
,
即r<2
2
,
故0<r<2
2
,
故選:C
點評:本題主要考查直線和圓的位置關(guān)系的應(yīng)用,根據(jù)點到直線的距離公式是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

半徑為2cm的球的體積是( 。
A、
3
cm3
B、
16π
3
cm3
C、
32
3
π
cm3
D、
64
3
π
cm3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=3x+x-3的零點為x1,函數(shù)g(x)=log3x+x-3的零點為x2,則x1+x2=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=x2+5,那么f(-2)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)t∈R,過定點A的動直線x-my=0和過定點B的動直線mx+y+2m-2=0交于點P(x,y),則|PA|•|PB|的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC中,若cosA+cosB=sinC,則△ABC的形狀是(  )
A、等腰三角形
B、等邊三角形
C、等腰直角三角形
D、直角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知k為實數(shù),對于實數(shù)a和b定義運算“*”:a*b=
a2-kab,a≤b
b2-kab,a>b
,設(shè)f(x)=(2x-1)*(x-1).
(Ⅰ)若f(x)在[-
1
2
,
1
2
]上為增函數(shù),求實數(shù)k的取值范圍;
(Ⅱ)已知k
1
2
,且當x>0時,f(f(x))>0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(2x+φ),其中φ為實數(shù),若f(
π
3
)=1,則函數(shù)g(x)=2cos(2x+φ)+1的單調(diào)遞增區(qū)間是( 。
A、[kπ-
12
,kπ+
π
12
](k∈Z)
B、[kπ+
π
12
,kπ+
12
](k∈Z)
C、[kπ-
3
,kπ+
π
6
](k∈Z)
D、[kπ-
π
3
,kπ+
π
6
](k∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,點P(x0,y0)到直線l1:Ax+By+C=0,l2:Ax+By+C′=0(C≠C′)的有向距離分別為δ1=
Ax0+By0+C
A2+B2
,δ2=
Ax0+By0+C′
A2+B2
,則( 。
A、0<
δ1
δ2
<1
B、-1<
δ1
δ2
<0,
δ1
δ2
<0,
δ1
δ2
<0
C、
δ1
δ2
<-1
D、
δ1
δ2
>1

查看答案和解析>>

同步練習冊答案