已知函數(shù)f(x)=數(shù)學(xué)公式(x∈[2,6]).試判斷此函數(shù)在x∈[2,6]上的單調(diào)性并求函數(shù)在x∈[2,6]上的最大值和最小值.

解:設(shè)x1、x2是區(qū)間[2,6]上的任意兩個實數(shù),且x1<x2,

=
=
由2≤x1<x2≤6,得x2-x1>0,(x1-1)(x2-1)>0,
于是f(x1)-f(x2)>0,即f(x1)>f(x2).
所以函數(shù)f(x)=是區(qū)間[2,6]上的減函數(shù).
因此,函數(shù)f(x)=在區(qū)間的兩個端點上分別取得最大值與最小值,
最大值f(2)=3,最小值f(6)=
分析:先用定義判斷單調(diào)性,根據(jù)單調(diào)性可求得函數(shù)的最大值最小值.
點評:本題考查函數(shù)單調(diào)性的判斷及其應(yīng)用,考查函數(shù)最值的求解,數(shù)基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時f(x)的表達(dá)式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案